+ All Categories
Home > Documents > ECE 546 Introduction

ECE 546 Introduction

Date post: 08-Nov-2021
Category:
Upload: others
View: 7 times
Download: 0 times
Share this document with a friend
22
ECE 546 – Jose SchuttAine 1 ECE 546 Introduction Spring 2020 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois [email protected]
Transcript
Page 1: ECE 546 Introduction

ECE 546 – Jose Schutt‐Aine 1

ECE 546Introduction

Spring 2020

Jose E. Schutt-AineElectrical & Computer Engineering

University of [email protected]

Page 2: ECE 546 Introduction

ECE 546 – Jose Schutt‐Aine 2

0

0.5

1

1.5

2

2.5

Log

(Cap

acity

Gb/

s)

1980 1985 1990 1995 2000 2005 2010A

Limits of Optical

Auto Digital Wireless

Consumer Computer

MEMS

High bandwidth High-speed Digital

Analog, RF

Future System Needs and Functions

Page 3: ECE 546 Introduction

ECE 546 – Jose Schutt‐Aine

Inter-IC Communication Trends

Page 4: ECE 546 Introduction

ECE 546 – Jose Schutt‐Aine

Memory Bus (Single‐ended, Parallel)• DDR (4.266 Gbps)• LPDDR4 (4.266 Gbps)• GDDR (7 Gps)• XDR (differential, 4.8 Gbps)• Wide IO2, HBM

Cable (Differential, Serial)• USB (4.266 Gbps)• HDMI (4.266 Gbps)• Firewire: Cat 5, Cat 5e, Cat 6

Storage (Differential, Serial)• eMMC, UFS (6 Gbps)• SAS, STATA (6 Gbps)• FiberChannel (10 – 20 Gbps)

Ethernet (Differential, Serial)• XAUI (10 Gbps)• XFI (10 Gbps)• CEI‐6GLR• SONNET (10 Gbps)• 10GBase‐x, 100GBase (25 Gbps)

Front Side Bus (Differential, Parallel)• QuickPath Interconnect (6.4 Gbps)• HyperTransport (6.4 Gbps)

Computer IO (Differential, Parallel)• PCIe (8 Gbps)• InfiniBand (10 Gbps)

High-Speed Bus and Networks

Page 5: ECE 546 Introduction

ECE 546 – Jose Schutt‐Aine 5

TransmissionChannel

TransmissionChannel

TransmissionChannel

Ideal

Common

Noisy

Signal Integrity

Page 6: ECE 546 Introduction

ECE 546 – Jose Schutt‐Aine

Signal Integrity• Serial data transmission sends binary bits of information 

as a series of optical or electrical pulses

• The transmission channel (coax, radio, fiber) generally distorts the signal in various ways

• From this signal we must recover both clock and data

Page 7: ECE 546 Introduction

ECE 546 – Jose Schutt‐Aine

Signal Integrity

Page 8: ECE 546 Introduction

ECE 546 – Jose Schutt‐Aine

Timing Margin

Page 9: ECE 546 Introduction

ECE 546 – Jose Schutt‐Aine

Timing Jitter

Page 10: ECE 546 Introduction

ECE 546 – Jose Schutt‐Aine

Channel

Page 11: ECE 546 Introduction

ECE 546 – Jose Schutt‐Aine

Design Challenges for High-Speed Links• Modern computer systems require Tb/s aggregate 

off‐chip signaling throughput– Interconnect resources are limited

• Parallel buses with fast edge rates must be used

– Package size and pin count cannotkeep up with speed

– Stringent power and BER requirements to be met

– Channel attenuation increases with the data rate

– High‐performance signalingrequires high‐cost channels

– Crosstalk‐induced jitter

Available number and required speed of I/Os(ITRS roadmap)

A typical controller-memory interface

Page 12: ECE 546 Introduction

ECE 546 – Jose Schutt‐Aine

Signal Integrity Impairments In High‐Speed Buses

– SI issues limit system performance to well below channel Shannon capacity

– Inter‐Symbol Interference (ISI) is anissue for long backplane buses

– For short, low‐cost parallel links,  dominant noise source is crosstalk• Far‐end crosstalk (FEXT) induces 

timing jitter (CIJ), impacts timing budget

– Other SI impairments:• Simultaneous‐switching (SSO) noise• Thermal noise• Jitter from PLL/DLL 

Insertion loss of a single DDR channel

FEXT increases with routing density

Page 13: ECE 546 Introduction

ECE 546 – Jose Schutt‐Aine 1313

Motherboards and Backplanes

Page 14: ECE 546 Introduction

ECE 546 – Jose Schutt‐Aine 14

Cables and Transmission Lines

coaxial

twisted pairs

Page 15: ECE 546 Introduction

ECE 546 – Jose Schutt‐Aine 15

- Up to 16 layers- Hundreds of vias- Thousands of TLs- High density- Nonuniformity

Package-Level Complexity

Page 16: ECE 546 Introduction

ECE 546 – Jose Schutt‐Aine 16

Chip size(mm2)

Number of transistors(million)

Interconnect width(nm)

Total interconnect length(km)

1997 2003 20122006

300 430 750520

11 76 200 1400

200 100 70 35

2.16 2.84 5.14 24

Semiconductor Technology Trends

Page 17: ECE 546 Introduction

ECE 546 – Jose Schutt‐Aine 17

Source: ITRS roadmap 2004

Signal Delay

Delay for Metal 1 and Global Wiring versus Feature Size

gates delay

interconnect delayGlobal

Wiring w/o Repeaters

GlobalWiring w

Repeaters

LocalWiring

Gate Delay

Signal Delay Trend

Page 18: ECE 546 Introduction

ECE 546 – Jose Schutt‐Aine 18

• Total interconnect length (m/cm2) – active wiring only, excluding global levels will increases:

• Interconnect power dissipation is more than 50% of the total dynamic power consumption in 130nm and will become dominant in future technology nodes

• Interconnect centric design flows have been adopted to reduce the length of the critical signal path

Year 2003 2004 2005 2006 2007 2008 2009Total

Length 579 688 907 1002 1117 1401 1559

Interconnects

Page 19: ECE 546 Introduction

ECE 546 – Jose Schutt‐Aine 19

Source: M. Bohr and Y. El-Mansy - IEEE TED Vol. 4, March 1998

Vertical parallel-plate capacitance 0.05 fF/m2

Vertical parallel-plate capacitance (min width) 0.03 fF/mVertical fringing capacitance (each side) 0.01 fF/mHorizontal coupling capacitance (each side) 0.03

5-Layer Interconnect Technology 0.25m

Page 20: ECE 546 Introduction

ECE 546 – Jose Schutt‐Aine 20

Crosstalk Dispersion Attenuation

Reflection Distortion Loss

Delta I Noise Ground Bounce Radiation

Sense Line

Drive Line

Drive Line

Signal Integrity Impairments

Page 21: ECE 546 Introduction

ECE 546 – Jose Schutt‐Aine 21

Measurements

VNA: S-parameter Spectrum Analyzer

Time-domain simulation Eye diagram

Page 22: ECE 546 Introduction

ECE 546 – Jose Schutt‐Aine 22

* Electromagnetic solver

* Circuit level simulator

* Behavioral simulator

* Placement & routing

* Layout designer

* Netlist extractor

* Multiphysics simulator

* Stochastic analyzer

* Design verification

* Electromagnetic analysis

Tools for Signal Integrity


Recommended