+ All Categories
Home > Documents > Extreme URLLC: Vision, Challenges, and Key Enablers · 1 Extreme URLLC: Vision, Challenges, and Key...

Extreme URLLC: Vision, Challenges, and Key Enablers · 1 Extreme URLLC: Vision, Challenges, and Key...

Date post: 18-Jul-2020
Category:
Upload: others
View: 4 times
Download: 0 times
Share this document with a friend
7
1 Extreme URLLC: Vision, Challenges, and Key Enablers Jihong Park, Sumudu Samarakoon, Hamid Shiri, Mohamed K. Abdel-Aziz, Takayuki Nishio, Anis Elgabli, and Mehdi Bennis Abstract—Notwithstanding the significant traction gained by ultra- reliable and low-latency communication (URLLC) in both academia and 3GPP standardization, fundamentals of URLLC remain elusive. Meanwhile, new immersive and high-stake control applications with much stricter reliability, latency and scalability requirements are posing unprecedented challenges in terms of system design and algorith- mic solutions. This article aspires at providing a fresh and in-depth look into URLLC by first examining the limitations of 5G URLLC, and putting forward key research directions for the next generation of URLLC, coined eXtreme ultra-reliable and low-latency communi- cation (xURLLC). xURLLC is underpinned by three core concepts: (1) it leverages recent advances in machine learning (ML) for faster and reliable data-driven predictions; (2) it fuses both radio frequency (RF) and non-RF modalities for modeling and combating rare events without sacrificing spectral efficiency; and (3) it underscores the much needed joint communication and control co-design, as opposed to the communication-centric 5G URLLC. The intent of this article is to spear- head beyond-5G/6G mission-critical applications by laying out a holistic vision of xURLLC, its research challenges and enabling technologies, while providing key insights grounded in selected use cases. 1 I NTRODUCTION T HE overarching goal of ultra-reliable and low-latency communication (URLLC) lies in satisfying the stringent reliability and latency requirements of mission and safety- critical applications. Achieving this is tantamount to char- acterizing statistics of extreme and rare events (e.g., taming the tail of latency distribution), in contrast to the average- based system design [1], [2]. To remedy to this, 3GPP has been using a brute-force approach centered on system-level simulations to meet the 99.999% (5-nine) reliability and 1 ms latency targets, using a plethora of techniques (short packet transmission, grant-free mechanisms, leveraging spatial, fre- quency, and temporal diversity techniques [1], [3], [4]). While advances have been made in sparse, stationary and controlled environments with traditional model-based ap- proaches, we still lack a deep understanding of wireless channel dynamics, estimation, stability of control-loop sys- tems, robustness to unmodeled phenomena, to mention a few. These challenges are further exacerbated in light of the following recent trends. On one hand, the emergence of new applications ne- cessitates much stricter reliability and latency requirements J. Park, S. Samarakoon, A. Elgabli, H. Shiri, M. K. Abdel-Aziz and M. Bennis are with the Centre for Wireless Communications, University of Oulu, 90014 Oulu, Finland (email: {jihong.park, sumudu.samarakoon, anis.elgabli, hamid.shiri, mohamed.abdel-aziz, mehdi.bennis}@oulu.fi). T. Nishio is with the Graduate School of Informatics, Kyoto University, 606- 8501 Kyoto, Japan (email: [email protected]). R6. Non-RF Overhead Predictive Non-RF CoCoCo V2V AoI Visuo-Haptic VR Remote/Autonomous UAV RGB-D Camera RIS Scalability Low-Latency Reliability xURLLC R7. Controller Connectivity R8. Stable Control R9. Scalable Control R1. Sample Complexity R2. Reliable Prediction R3. Perception-Aware Prediction R4. Multimodal Fusion R5. Beyond Visual Modality R6. Non-RF Overhead <1ms 9-nines 1 Tbps/m 3 5G URLLC Fig. 1. Anatomy of eXtreme URLLC (xURLLC): (i) machine learn- ing (ML) based prediction, (ii) non-RF modality utilization, and (iii) communication-control co-design (CoCoCo). than those set in 5G URLLC. In particular, high-precision robot control and autonomous vehicles cannot afford 5-nine reliability and millisecond latency [4]. Factory automation over wireless links should guarantee 7-nine reliability and sub-1ms latency, similar to those of the Ethernet-based time sensitive networking (TSN) and isochronous real time (IRT) system standards [5]. Meanwhile, the next generation (6G) wireless systems is advocating 9-nine reliability with 0.1 ms latency for supporting intelligent systems built upon various perceptual modalities (or Internet of senses) and real-time human-machine interactions [3], [6], [7]. On the other hand, URLLC has become conflated with both massive machine-type communication (mMTC) and enhanced mobile broadband (eMBB) [8]. Unlike the rigid 5G URLLC design focusing on sparse deployments and short packet transmissions, some applications must simul- taneously support massive connections and high data rates, i.e., scalability. For instance, an autonomous drone swarm in a rescue mission requires not only URLLC but also a massive number of wireless control loops for inter-drone collision avoidance. In precision agriculture, vision-based monitoring and remotely controlling sowing robots call for both URLLC and high-speed data rates. In short, the eMBB- URLLC-mMTC compound is no longer a zero-sum game, mandating novel solutions to enable scalable support for high data rate mission critical applications. As we shall examine, this article discusses the limitations of 5G URLLC, and puts forward a new research agenda for the next generation of URLLC, coined eXtreme URLLC (xURLLC), rooted in three key concepts. arXiv:2001.09683v1 [cs.IT] 27 Jan 2020
Transcript
Page 1: Extreme URLLC: Vision, Challenges, and Key Enablers · 1 Extreme URLLC: Vision, Challenges, and Key Enablers Jihong Park, Sumudu Samarakoon, Hamid Shiri, Mohamed K. Abdel-Aziz, yTakayuki

1

Extreme URLLC: Vision, Challenges, and Key EnablersJihong Park, Sumudu Samarakoon, Hamid Shiri, Mohamed K. Abdel-Aziz,

†Takayuki Nishio, Anis Elgabli, and Mehdi Bennis

F

Abstract—Notwithstanding the significant traction gained by ultra-reliable and low-latency communication (URLLC) in both academiaand 3GPP standardization, fundamentals of URLLC remain elusive.Meanwhile, new immersive and high-stake control applications withmuch stricter reliability, latency and scalability requirements are posingunprecedented challenges in terms of system design and algorith-mic solutions. This article aspires at providing a fresh and in-depthlook into URLLC by first examining the limitations of 5G URLLC,and putting forward key research directions for the next generationof URLLC, coined eXtreme ultra-reliable and low-latency communi-cation (xURLLC). xURLLC is underpinned by three core concepts:(1) it leverages recent advances in machine learning (ML) for fasterand reliable data-driven predictions; (2) it fuses both radio frequency(RF) and non-RF modalities for modeling and combating rare eventswithout sacrificing spectral efficiency; and (3) it underscores the muchneeded joint communication and control co-design, as opposed to thecommunication-centric 5G URLLC. The intent of this article is to spear-head beyond-5G/6G mission-critical applications by laying out a holisticvision of xURLLC, its research challenges and enabling technologies,while providing key insights grounded in selected use cases.

1 INTRODUCTION

THE overarching goal of ultra-reliable and low-latencycommunication (URLLC) lies in satisfying the stringent

reliability and latency requirements of mission and safety-critical applications. Achieving this is tantamount to char-acterizing statistics of extreme and rare events (e.g., tamingthe tail of latency distribution), in contrast to the average-based system design [1], [2]. To remedy to this, 3GPP hasbeen using a brute-force approach centered on system-levelsimulations to meet the 99.999% (5-nine) reliability and 1 mslatency targets, using a plethora of techniques (short packettransmission, grant-free mechanisms, leveraging spatial, fre-quency, and temporal diversity techniques [1], [3], [4]).While advances have been made in sparse, stationary andcontrolled environments with traditional model-based ap-proaches, we still lack a deep understanding of wirelesschannel dynamics, estimation, stability of control-loop sys-tems, robustness to unmodeled phenomena, to mention afew. These challenges are further exacerbated in light of thefollowing recent trends.

On one hand, the emergence of new applications ne-cessitates much stricter reliability and latency requirements

J. Park, S. Samarakoon, A. Elgabli, H. Shiri, M. K. Abdel-Aziz and M. Bennisare with the Centre for Wireless Communications, University of Oulu,90014 Oulu, Finland (email: {jihong.park, sumudu.samarakoon, anis.elgabli,hamid.shiri, mohamed.abdel-aziz, mehdi.bennis}@oulu.fi).†T. Nishio is with the Graduate School of Informatics, Kyoto University, 606-8501 Kyoto, Japan (email: [email protected]).

R6. Non-RF OverheadPredictive

Non-RF

CoCoCo

V2V AoI Visuo-Haptic VR

Remote/Autonomous UAV

RGB-D CameraRIS

Scalability

Low-Latency Reliability

xURLLC

R7. Controller ConnectivityR8. Stable ControlR9. Scalable Control

R1. Sample ComplexityR2. Reliable PredictionR3. Perception-Aware Prediction

R4. Multimodal FusionR5. Beyond Visual ModalityR6. Non-RF Overhead

<1ms 9-nines

1 Tbps/m3

5G URLLC

Fig. 1. Anatomy of eXtreme URLLC (xURLLC): (i) machine learn-ing (ML) based prediction, (ii) non-RF modality utilization, and (iii)communication-control co-design (CoCoCo).

than those set in 5G URLLC. In particular, high-precisionrobot control and autonomous vehicles cannot afford 5-ninereliability and millisecond latency [4]. Factory automationover wireless links should guarantee 7-nine reliability andsub-1 ms latency, similar to those of the Ethernet-basedtime sensitive networking (TSN) and isochronous real time(IRT) system standards [5]. Meanwhile, the next generation(6G) wireless systems is advocating 9-nine reliability with0.1 ms latency for supporting intelligent systems built uponvarious perceptual modalities (or Internet of senses) andreal-time human-machine interactions [3], [6], [7].

On the other hand, URLLC has become conflated withboth massive machine-type communication (mMTC) andenhanced mobile broadband (eMBB) [8]. Unlike the rigid5G URLLC design focusing on sparse deployments andshort packet transmissions, some applications must simul-taneously support massive connections and high data rates,i.e., scalability. For instance, an autonomous drone swarmin a rescue mission requires not only URLLC but also amassive number of wireless control loops for inter-dronecollision avoidance. In precision agriculture, vision-basedmonitoring and remotely controlling sowing robots call forboth URLLC and high-speed data rates. In short, the eMBB-URLLC-mMTC compound is no longer a zero-sum game,mandating novel solutions to enable scalable support forhigh data rate mission critical applications.

As we shall examine, this article discusses the limitationsof 5G URLLC, and puts forward a new research agendafor the next generation of URLLC, coined eXtreme URLLC(xURLLC), rooted in three key concepts.

arX

iv:2

001.

0968

3v1

[cs

.IT

] 2

7 Ja

n 20

20

Page 2: Extreme URLLC: Vision, Challenges, and Key Enablers · 1 Extreme URLLC: Vision, Challenges, and Key Enablers Jihong Park, Sumudu Samarakoon, Hamid Shiri, Mohamed K. Abdel-Aziz, yTakayuki

2

1. Predictive URLLC. 5G URLLC is reactive in nature, andis built upon the availability of known, stationary channel andtraffic models, questioning the adequacy of the definition ofreliability, as noted in [9]. In contrast, xURLLC is essentiallypredictive, leveraging the recent advancement in machinelearning (ML) to enable highly accurate predictions of chan-nels, traffic, states, and other key performance indicators [8].A fundamental research question addressed by predictiveURLLC is summarized as follows.

Q1. Can wireless environments (channels, interference,services, etc.) be reliably predicted based on past datasamples? and under what future horizon?

The challenges raised by Q1 and associated researchagenda (R1-3) are discussed in Sect. 2, followed by selecteduse cases.

2. Non-radio frequency (RF) Aided URLLC. By design5G URLLC is RF-based and requires investing wirelessresources for channel probing and estimation. By contrast,xURLLC exploits non-RF modalities, such as color and depth(RGB-D) images for channel prediction [10]. This data pro-vides rich features for predicting extreme and sudden events(e.g., blockages), which cannot be done with current RF-based solutions, due to lack of statistical relevance and/orexpensive acquisition under limited radio resources. Byextension, one can utilize reconfigurable intelligent surfaces(RISs) and metasurfaces [7] to tune channel randomnessby manipulating surface reflections, while inducing higherenergy efficiency (EE). Enjoying these benefits hinges onaddressing the following question.

Q2. How to transfer and fuse non-RF and RF modalitieswith minimum overhead to enable xURLLC?

Sect. 3 addresses the challenges and opportunities (R4-6)raised by Q2 through the lens of exemplary use cases.

3. Control Co-Designed URLLC. In 3GPP parlance, com-munication reliability is calculated by counting erroneouspackets divided by the total transmitted packets during anobserved time period [4]. In contrast, xURLLC cares aboutwhether consecutive packet errors or losses disrupt the controloperation. Understanding control dynamics provides a nat-ural (yet untapped) opportunity to relax the very stringentlatency and reliability requirements, making communicationand control co-design (CoCoCo) a core concept in xURLLC.To reach this goal, one should take into account wirelesschannel dynamics in control systems, through which the re-ceived state observations and actuating commands may beoutdated and distorted. Moreover, relaxing communicationlatency and reliability requirements, while guaranteeingcontrol stability and safety against external perturbations,internal state fluctuations, and inter-agent collision is ofparamount importance, raising the following question.

Q3. Can URLLC requirements be relaxed by taking intoaccount control dynamics, while ensuring controlstability?

In Sect. 4, R7-R9 discuss the challenges and opportunitiesraised in Q3 through selected case studies, followed byconclusions in Sect. 5.

2 PREDICTIVE URLLC5G URLLC focuses on characterizing extreme events atthe cost of spectral efficiency, limiting its scalability. Indoing so, 5G URLLC presumes a static channel modelthat fails to capture non-stationary channel dynamics andexogenous uncertainties (e.g., out-of-distribution or otherunder-modeled rare events), which are common in uncon-trolled environments. In contrast, xURLLC aims at proactivedecision making powered by ML, in which proactivenessoffers available resources to satisfy 9-nine reliability within0.1 ms latency, which is on par with Ethernet-based TSNand IRT [5]. Furthermore, in contrast to the static andmodel-based paradigm, xURLLC allows to communicate bylearning from data samples even under non-stationary andunpredictable environments. Examples include latency es-timation, age-of-information (AoI) [11], and traffic demandprediction [12] based on users’ visuo-haptic perceptions.

2.1 Challenges and OpportunitiesThe adoption of ML entails novel challenges and researchopportunities in xURLLC, as we shall examine.

R1. Sample Complexity. Making predictions using an MLmodel, i.e., inference, should be preceded by model train-ing. A trained model is valid so long as the training datadistribution is unchanged; otherwise, the outdated modelmust be re-trained. The interval of this continual learning, i.e.,training convergence time, should be sufficiently small com-pared to the temporal channel evolution dynamics. Trainingconvergence analysis quantifies the required number oftraining samples to achieve a target accuracy, i.e., samplecomplexity [8]. Due to the lack of samples at a single location,taming sample complexity requires communication. Feder-ated learning (FL) addresses this problem by periodicallyexchanging locally trained model parameters, rather thaninstantly exchanging raw samples [8], thereby reducing thecost of predictive URLLC.

R2. Reliable Prediction. Predictive URLLC improvescommunication reliability, as long as the ML prediction isreliable. Although traditional deep neural network (NN)models can achieve high prediction accuracy, they do notreport the reliability of their prediction. To measure reliabil-ity against unseen training samples, one needs to quantifythe generalization error, defined as the difference between theexpected loss across the entire dataset and the empiricaltraining loss [8]. Another solution is to leverage Bayesianlearning methods such as Gaussian process regression (GPR)that provide the prediction confidence via the variance ofthe posterior distribution [11]. Last but not least, adversarialtraining improves reliability against non-stationary data dis-tributions due to time-varying channels, malfunctions andattacks, by training with synthetic adversarial data samples.

R3. Perception-Aware Prediction. Look-ahead forecastingoffers more available resources, at the expense of accuracy.Prediction horizon should therefore be minimized by utiliz-ing perceptual characteristics. For driving scenarios, the pre-diction horizon can be determined by the driver’s perception-reaction time (PRT) that is around 2.5 s for human driversand several milliseconds for driverless cars. When human-driving and driverless cars coexist, the PRT of both driving

Page 3: Extreme URLLC: Vision, Challenges, and Key Enablers · 1 Extreme URLLC: Vision, Challenges, and Key Enablers Jihong Park, Sumudu Samarakoon, Hamid Shiri, Mohamed K. Abdel-Aziz, yTakayuki

3

Target Rate of Link1 (nats/sec)R̂1<latexit sha1_base64="Y1I26M8yZ6nwjySz3KbAO/TJHeM=">AAAXPXicndjbbuO4GQdw7/a0TU+zLZCbAoXRzACZIh3Yuy0KDFBgEzvnxEmcg3NQYlAUZWssShqJymEI9SV62z5Ln6MP0Luit70tJVH8S0q2F2tgxuLv+0iR0qeDY0e+l4he75+fff697//ghz/64sdLP/npz37+i1df/vIiCdOYsnMa+mF8aZOE+V7AzoUnfHYZxYxw22cTezHI45N7FideGJyJp4jdcjILPNejRCi6suZEyHE27U9frfTe9YpP9/lGX2+sdPTnePrl8m8sJ6QpZ4GgPkmSm34vEreSxMKjPsuWlpasNGERoQsyY9IlAX2aO/Fal0WJ683K77Uu4YmY8+KbEzEvNpInbhcbbhiIZK2bpLbqkcZsrVssOGuMLOYxU41YCGLn+63FboKQOB/SRE2LeqIZk04xfNNYoNYTk3YqDXm+TIVeQP3UYXLOiMNaE+GpL7w4fGiq7c0SEaeq85IVsAcxZ2HMuNTfmTzTG42o6huEDz5zZqzY8Y0O3Mr1VmTpTaOfPwtjTx3Qeg9jzV08emEjrWg3Uqiqq1rGIG82E3zi1ccYFO1mSpgfsbz86nnAdrLjiWe52tqpHxgVqiiauRU2k9X6Wdwa11gj1WGuF7TnMAQ2ktkj4ZFfn8GmllYai6mXNPM0NRJ9xjnJ5EHx1VpuHPo+iZ8ytchqs5ERhIK0pj2qqJEYxaG6Tuqn7VhLOy0Kk3LReYZpNLLUPxIvMjkuvxuxJPTT1oxOK2ompmq9aj21PC3Nik1UYlROaB3bz89IJi3b7b54KvLFu2HMyxSzcHUVqRNvlauR0gpCL3DU5dXNs8q1vbfmibqmmey9+6PqkuXXc97nI3Pka8v21SWbfExJzF5nZUDtKnQxlLQYj+b5kQzd91k3q2cli2d5pwsm6LwbFpNs9GCBo4eeu57vd/MZZHoBtVgx2d9JK8/J/pInWeommWeI2LvPnyxWGiQLL/pufe/zrl9HojoMm9LK79+JKzeriZ7ujsZG84YJ1L3Gu/X0sTnCvrR85gqdFUsr9mbzqrlaBld1862OvtVt3y7jlqy62zrDqnZ7U2bc6Oatjt/qG3Z+7yeBo06QKjt1ltQTws7v/HpyNlflUjyV1LXgZPL3xae7EYaLvGoUdTVV+5vnc8ofu5avHtMOyaa2iaStSKojlKhlC/Yo1KEZZKTaNIcuouqZFE3pnQxBeT2VuNp7W/FYjqcWE6RqFkklNfNqHGLqxbyak6wObBUrv6dyNe+8JsyIg/LkUuKrJVR7OZRqL4emyfMmr5oH6HFQX9ZYrUr2sjtTLeOsHh60wwNST3BY0b//Lf0dNmiH6/1VYQbSevAcJjxfHSOrrNQiJsoDI6q274Spur+YcYbZncXUFaV39Twa6VDqxoa3xigDu+U28nPVt46iOtQ9SelrM2/7xRS7nsJcVxauNrJ29Yu8um/6t7LsW6v4lX4xQiPZ9lP2LLtAnf6dr54L1MSFWZsXSPtOL8oLsOYwFQiohokMUzmclpxGBm2D9txgZDCiBh2DTlDhKJWjqcSgFTtgB3Mbp6rSn2ePHXAte5LKyV17vhPHIGYhUileGFc44Nq4qWwP6sj2iPel2K68r50ETeYc7Oh+O+bg21o2NswtwtU03qrILU+nGsk1U9W3OnkWGwqFNrVVIVUXpj4JZrj4k9nF9VZRZm9UMflO1w8f1AuXeoHVk3tS/8v3f67mSqSZB8kPzptutQbjNsqKQinUgTpQxsCsdjW6sr7yimfQGXQOnUM9qAf9AP0AXUAXUB/qQzmUQwNo/QKDhtAIigq0P0I/QmNoDE2gCVRAcSnbKTSF3kPvoQ/QB+gj9BH6BH2CfoJ+gvagveL2psuOksgTxO/6TKgfG4nOXkf2OsbYgG5AB9ABdAgdQjehm9At6BZ0G7oN3YHuQHehu9A96B50H7oPPYAeQA+hh9ARdAQ9gh5Bj6HH0BPoCXQMxePcPoWeQs+gZ9Bz6Dn0AnoBnUAn0EvoJfQKegW9hl7rmiqa9v8pLW5Ky66VFt+AorT4AIrS4kMoSotvQlFafAuK0uLbUJQW34GitPguFKXF96AoLb4PRWnxAyhKix9CUVp8BEVp8SMoSosfQ1Fa/ASK0uJjKEqLn0JRWvwMitLi51CUFr+AorT4BIrS4pdQlBa/gqK0+DW0Kq0B8b1ZTKK5R18uLbqON6918wzeAJrHPH3pTZ8OgUODm0Dzs5FuAc2DnW4Dtw3uAM17B90F7hrcA+4Z3AfuG3zpRwc9BJofK3QEHBk8Ah4ZPAYeGzwBnhgcA83PCnoKPDV4BjwzeA48N/jSKzOdACcGL4GXBq+AVwavgdcGHaB6A5q+Wum3/378fOPiq3f93rv+yR9WvlnTf1v+ovPrzm87q51+50+dbzo7nePOeYd2eOevnb91/r78j+V/Lf97+T9l6uef6T6/6jQ+y//9Hzzg8L4=</latexit><latexit sha1_base64="Y1I26M8yZ6nwjySz3KbAO/TJHeM=">AAAXPXicndjbbuO4GQdw7/a0TU+zLZCbAoXRzACZIh3Yuy0KDFBgEzvnxEmcg3NQYlAUZWssShqJymEI9SV62z5Ln6MP0Luit70tJVH8S0q2F2tgxuLv+0iR0qeDY0e+l4he75+fff697//ghz/64sdLP/npz37+i1df/vIiCdOYsnMa+mF8aZOE+V7AzoUnfHYZxYxw22cTezHI45N7FideGJyJp4jdcjILPNejRCi6suZEyHE27U9frfTe9YpP9/lGX2+sdPTnePrl8m8sJ6QpZ4GgPkmSm34vEreSxMKjPsuWlpasNGERoQsyY9IlAX2aO/Fal0WJ683K77Uu4YmY8+KbEzEvNpInbhcbbhiIZK2bpLbqkcZsrVssOGuMLOYxU41YCGLn+63FboKQOB/SRE2LeqIZk04xfNNYoNYTk3YqDXm+TIVeQP3UYXLOiMNaE+GpL7w4fGiq7c0SEaeq85IVsAcxZ2HMuNTfmTzTG42o6huEDz5zZqzY8Y0O3Mr1VmTpTaOfPwtjTx3Qeg9jzV08emEjrWg3Uqiqq1rGIG82E3zi1ccYFO1mSpgfsbz86nnAdrLjiWe52tqpHxgVqiiauRU2k9X6Wdwa11gj1WGuF7TnMAQ2ktkj4ZFfn8GmllYai6mXNPM0NRJ9xjnJ5EHx1VpuHPo+iZ8ytchqs5ERhIK0pj2qqJEYxaG6Tuqn7VhLOy0Kk3LReYZpNLLUPxIvMjkuvxuxJPTT1oxOK2ompmq9aj21PC3Nik1UYlROaB3bz89IJi3b7b54KvLFu2HMyxSzcHUVqRNvlauR0gpCL3DU5dXNs8q1vbfmibqmmey9+6PqkuXXc97nI3Pka8v21SWbfExJzF5nZUDtKnQxlLQYj+b5kQzd91k3q2cli2d5pwsm6LwbFpNs9GCBo4eeu57vd/MZZHoBtVgx2d9JK8/J/pInWeommWeI2LvPnyxWGiQLL/pufe/zrl9HojoMm9LK79+JKzeriZ7ujsZG84YJ1L3Gu/X0sTnCvrR85gqdFUsr9mbzqrlaBld1862OvtVt3y7jlqy62zrDqnZ7U2bc6Oatjt/qG3Z+7yeBo06QKjt1ltQTws7v/HpyNlflUjyV1LXgZPL3xae7EYaLvGoUdTVV+5vnc8ofu5avHtMOyaa2iaStSKojlKhlC/Yo1KEZZKTaNIcuouqZFE3pnQxBeT2VuNp7W/FYjqcWE6RqFkklNfNqHGLqxbyak6wObBUrv6dyNe+8JsyIg/LkUuKrJVR7OZRqL4emyfMmr5oH6HFQX9ZYrUr2sjtTLeOsHh60wwNST3BY0b//Lf0dNmiH6/1VYQbSevAcJjxfHSOrrNQiJsoDI6q274Spur+YcYbZncXUFaV39Twa6VDqxoa3xigDu+U28nPVt46iOtQ9SelrM2/7xRS7nsJcVxauNrJ29Yu8um/6t7LsW6v4lX4xQiPZ9lP2LLtAnf6dr54L1MSFWZsXSPtOL8oLsOYwFQiohokMUzmclpxGBm2D9txgZDCiBh2DTlDhKJWjqcSgFTtgB3Mbp6rSn2ePHXAte5LKyV17vhPHIGYhUileGFc44Nq4qWwP6sj2iPel2K68r50ETeYc7Oh+O+bg21o2NswtwtU03qrILU+nGsk1U9W3OnkWGwqFNrVVIVUXpj4JZrj4k9nF9VZRZm9UMflO1w8f1AuXeoHVk3tS/8v3f67mSqSZB8kPzptutQbjNsqKQinUgTpQxsCsdjW6sr7yimfQGXQOnUM9qAf9AP0AXUAXUB/qQzmUQwNo/QKDhtAIigq0P0I/QmNoDE2gCVRAcSnbKTSF3kPvoQ/QB+gj9BH6BH2CfoJ+gvagveL2psuOksgTxO/6TKgfG4nOXkf2OsbYgG5AB9ABdAgdQjehm9At6BZ0G7oN3YHuQHehu9A96B50H7oPPYAeQA+hh9ARdAQ9gh5Bj6HH0BPoCXQMxePcPoWeQs+gZ9Bz6Dn0AnoBnUAn0EvoJfQKegW9hl7rmiqa9v8pLW5Ky66VFt+AorT4AIrS4kMoSotvQlFafAuK0uLbUJQW34GitPguFKXF96AoLb4PRWnxAyhKix9CUVp8BEVp8SMoSosfQ1Fa/ASK0uJjKEqLn0JRWvwMitLi51CUFr+AorT4BIrS4pdQlBa/gqK0+DW0Kq0B8b1ZTKK5R18uLbqON6918wzeAJrHPH3pTZ8OgUODm0Dzs5FuAc2DnW4Dtw3uAM17B90F7hrcA+4Z3AfuG3zpRwc9BJofK3QEHBk8Ah4ZPAYeGzwBnhgcA83PCnoKPDV4BjwzeA48N/jSKzOdACcGL4GXBq+AVwavgdcGHaB6A5q+Wum3/378fOPiq3f93rv+yR9WvlnTf1v+ovPrzm87q51+50+dbzo7nePOeYd2eOevnb91/r78j+V/Lf97+T9l6uef6T6/6jQ+y//9Hzzg8L4=</latexit><latexit sha1_base64="Y1I26M8yZ6nwjySz3KbAO/TJHeM=">AAAXPXicndjbbuO4GQdw7/a0TU+zLZCbAoXRzACZIh3Yuy0KDFBgEzvnxEmcg3NQYlAUZWssShqJymEI9SV62z5Ln6MP0Luit70tJVH8S0q2F2tgxuLv+0iR0qeDY0e+l4he75+fff697//ghz/64sdLP/npz37+i1df/vIiCdOYsnMa+mF8aZOE+V7AzoUnfHYZxYxw22cTezHI45N7FideGJyJp4jdcjILPNejRCi6suZEyHE27U9frfTe9YpP9/lGX2+sdPTnePrl8m8sJ6QpZ4GgPkmSm34vEreSxMKjPsuWlpasNGERoQsyY9IlAX2aO/Fal0WJ683K77Uu4YmY8+KbEzEvNpInbhcbbhiIZK2bpLbqkcZsrVssOGuMLOYxU41YCGLn+63FboKQOB/SRE2LeqIZk04xfNNYoNYTk3YqDXm+TIVeQP3UYXLOiMNaE+GpL7w4fGiq7c0SEaeq85IVsAcxZ2HMuNTfmTzTG42o6huEDz5zZqzY8Y0O3Mr1VmTpTaOfPwtjTx3Qeg9jzV08emEjrWg3Uqiqq1rGIG82E3zi1ccYFO1mSpgfsbz86nnAdrLjiWe52tqpHxgVqiiauRU2k9X6Wdwa11gj1WGuF7TnMAQ2ktkj4ZFfn8GmllYai6mXNPM0NRJ9xjnJ5EHx1VpuHPo+iZ8ytchqs5ERhIK0pj2qqJEYxaG6Tuqn7VhLOy0Kk3LReYZpNLLUPxIvMjkuvxuxJPTT1oxOK2ompmq9aj21PC3Nik1UYlROaB3bz89IJi3b7b54KvLFu2HMyxSzcHUVqRNvlauR0gpCL3DU5dXNs8q1vbfmibqmmey9+6PqkuXXc97nI3Pka8v21SWbfExJzF5nZUDtKnQxlLQYj+b5kQzd91k3q2cli2d5pwsm6LwbFpNs9GCBo4eeu57vd/MZZHoBtVgx2d9JK8/J/pInWeommWeI2LvPnyxWGiQLL/pufe/zrl9HojoMm9LK79+JKzeriZ7ujsZG84YJ1L3Gu/X0sTnCvrR85gqdFUsr9mbzqrlaBld1862OvtVt3y7jlqy62zrDqnZ7U2bc6Oatjt/qG3Z+7yeBo06QKjt1ltQTws7v/HpyNlflUjyV1LXgZPL3xae7EYaLvGoUdTVV+5vnc8ofu5avHtMOyaa2iaStSKojlKhlC/Yo1KEZZKTaNIcuouqZFE3pnQxBeT2VuNp7W/FYjqcWE6RqFkklNfNqHGLqxbyak6wObBUrv6dyNe+8JsyIg/LkUuKrJVR7OZRqL4emyfMmr5oH6HFQX9ZYrUr2sjtTLeOsHh60wwNST3BY0b//Lf0dNmiH6/1VYQbSevAcJjxfHSOrrNQiJsoDI6q274Spur+YcYbZncXUFaV39Twa6VDqxoa3xigDu+U28nPVt46iOtQ9SelrM2/7xRS7nsJcVxauNrJ29Yu8um/6t7LsW6v4lX4xQiPZ9lP2LLtAnf6dr54L1MSFWZsXSPtOL8oLsOYwFQiohokMUzmclpxGBm2D9txgZDCiBh2DTlDhKJWjqcSgFTtgB3Mbp6rSn2ePHXAte5LKyV17vhPHIGYhUileGFc44Nq4qWwP6sj2iPel2K68r50ETeYc7Oh+O+bg21o2NswtwtU03qrILU+nGsk1U9W3OnkWGwqFNrVVIVUXpj4JZrj4k9nF9VZRZm9UMflO1w8f1AuXeoHVk3tS/8v3f67mSqSZB8kPzptutQbjNsqKQinUgTpQxsCsdjW6sr7yimfQGXQOnUM9qAf9AP0AXUAXUB/qQzmUQwNo/QKDhtAIigq0P0I/QmNoDE2gCVRAcSnbKTSF3kPvoQ/QB+gj9BH6BH2CfoJ+gvagveL2psuOksgTxO/6TKgfG4nOXkf2OsbYgG5AB9ABdAgdQjehm9At6BZ0G7oN3YHuQHehu9A96B50H7oPPYAeQA+hh9ARdAQ9gh5Bj6HH0BPoCXQMxePcPoWeQs+gZ9Bz6Dn0AnoBnUAn0EvoJfQKegW9hl7rmiqa9v8pLW5Ky66VFt+AorT4AIrS4kMoSotvQlFafAuK0uLbUJQW34GitPguFKXF96AoLb4PRWnxAyhKix9CUVp8BEVp8SMoSosfQ1Fa/ASK0uJjKEqLn0JRWvwMitLi51CUFr+AorT4BIrS4pdQlBa/gqK0+DW0Kq0B8b1ZTKK5R18uLbqON6918wzeAJrHPH3pTZ8OgUODm0Dzs5FuAc2DnW4Dtw3uAM17B90F7hrcA+4Z3AfuG3zpRwc9BJofK3QEHBk8Ah4ZPAYeGzwBnhgcA83PCnoKPDV4BjwzeA48N/jSKzOdACcGL4GXBq+AVwavgdcGHaB6A5q+Wum3/378fOPiq3f93rv+yR9WvlnTf1v+ovPrzm87q51+50+dbzo7nePOeYd2eOevnb91/r78j+V/Lf97+T9l6uef6T6/6jQ+y//9Hzzg8L4=</latexit><latexit sha1_base64="Y1I26M8yZ6nwjySz3KbAO/TJHeM=">AAAXPXicndjbbuO4GQdw7/a0TU+zLZCbAoXRzACZIh3Yuy0KDFBgEzvnxEmcg3NQYlAUZWssShqJymEI9SV62z5Ln6MP0Luit70tJVH8S0q2F2tgxuLv+0iR0qeDY0e+l4he75+fff697//ghz/64sdLP/npz37+i1df/vIiCdOYsnMa+mF8aZOE+V7AzoUnfHYZxYxw22cTezHI45N7FideGJyJp4jdcjILPNejRCi6suZEyHE27U9frfTe9YpP9/lGX2+sdPTnePrl8m8sJ6QpZ4GgPkmSm34vEreSxMKjPsuWlpasNGERoQsyY9IlAX2aO/Fal0WJ683K77Uu4YmY8+KbEzEvNpInbhcbbhiIZK2bpLbqkcZsrVssOGuMLOYxU41YCGLn+63FboKQOB/SRE2LeqIZk04xfNNYoNYTk3YqDXm+TIVeQP3UYXLOiMNaE+GpL7w4fGiq7c0SEaeq85IVsAcxZ2HMuNTfmTzTG42o6huEDz5zZqzY8Y0O3Mr1VmTpTaOfPwtjTx3Qeg9jzV08emEjrWg3Uqiqq1rGIG82E3zi1ccYFO1mSpgfsbz86nnAdrLjiWe52tqpHxgVqiiauRU2k9X6Wdwa11gj1WGuF7TnMAQ2ktkj4ZFfn8GmllYai6mXNPM0NRJ9xjnJ5EHx1VpuHPo+iZ8ytchqs5ERhIK0pj2qqJEYxaG6Tuqn7VhLOy0Kk3LReYZpNLLUPxIvMjkuvxuxJPTT1oxOK2ompmq9aj21PC3Nik1UYlROaB3bz89IJi3b7b54KvLFu2HMyxSzcHUVqRNvlauR0gpCL3DU5dXNs8q1vbfmibqmmey9+6PqkuXXc97nI3Pka8v21SWbfExJzF5nZUDtKnQxlLQYj+b5kQzd91k3q2cli2d5pwsm6LwbFpNs9GCBo4eeu57vd/MZZHoBtVgx2d9JK8/J/pInWeommWeI2LvPnyxWGiQLL/pufe/zrl9HojoMm9LK79+JKzeriZ7ujsZG84YJ1L3Gu/X0sTnCvrR85gqdFUsr9mbzqrlaBld1862OvtVt3y7jlqy62zrDqnZ7U2bc6Oatjt/qG3Z+7yeBo06QKjt1ltQTws7v/HpyNlflUjyV1LXgZPL3xae7EYaLvGoUdTVV+5vnc8ofu5avHtMOyaa2iaStSKojlKhlC/Yo1KEZZKTaNIcuouqZFE3pnQxBeT2VuNp7W/FYjqcWE6RqFkklNfNqHGLqxbyak6wObBUrv6dyNe+8JsyIg/LkUuKrJVR7OZRqL4emyfMmr5oH6HFQX9ZYrUr2sjtTLeOsHh60wwNST3BY0b//Lf0dNmiH6/1VYQbSevAcJjxfHSOrrNQiJsoDI6q274Spur+YcYbZncXUFaV39Twa6VDqxoa3xigDu+U28nPVt46iOtQ9SelrM2/7xRS7nsJcVxauNrJ29Yu8um/6t7LsW6v4lX4xQiPZ9lP2LLtAnf6dr54L1MSFWZsXSPtOL8oLsOYwFQiohokMUzmclpxGBm2D9txgZDCiBh2DTlDhKJWjqcSgFTtgB3Mbp6rSn2ePHXAte5LKyV17vhPHIGYhUileGFc44Nq4qWwP6sj2iPel2K68r50ETeYc7Oh+O+bg21o2NswtwtU03qrILU+nGsk1U9W3OnkWGwqFNrVVIVUXpj4JZrj4k9nF9VZRZm9UMflO1w8f1AuXeoHVk3tS/8v3f67mSqSZB8kPzptutQbjNsqKQinUgTpQxsCsdjW6sr7yimfQGXQOnUM9qAf9AP0AXUAXUB/qQzmUQwNo/QKDhtAIigq0P0I/QmNoDE2gCVRAcSnbKTSF3kPvoQ/QB+gj9BH6BH2CfoJ+gvagveL2psuOksgTxO/6TKgfG4nOXkf2OsbYgG5AB9ABdAgdQjehm9At6BZ0G7oN3YHuQHehu9A96B50H7oPPYAeQA+hh9ARdAQ9gh5Bj6HH0BPoCXQMxePcPoWeQs+gZ9Bz6Dn0AnoBnUAn0EvoJfQKegW9hl7rmiqa9v8pLW5Ky66VFt+AorT4AIrS4kMoSotvQlFafAuK0uLbUJQW34GitPguFKXF96AoLb4PRWnxAyhKix9CUVp8BEVp8SMoSosfQ1Fa/ASK0uJjKEqLn0JRWvwMitLi51CUFr+AorT4BIrS4pdQlBa/gqK0+DW0Kq0B8b1ZTKK5R18uLbqON6918wzeAJrHPH3pTZ8OgUODm0Dzs5FuAc2DnW4Dtw3uAM17B90F7hrcA+4Z3AfuG3zpRwc9BJofK3QEHBk8Ah4ZPAYeGzwBnhgcA83PCnoKPDV4BjwzeA48N/jSKzOdACcGL4GXBq+AVwavgdcGHaB6A5q+Wum3/378fOPiq3f93rv+yR9WvlnTf1v+ovPrzm87q51+50+dbzo7nePOeYd2eOevnb91/r78j+V/Lf97+T9l6uef6T6/6jQ+y//9Hzzg8L4=</latexit>

0 5 10 15 20 25 30 35Error |AoIestdB - AoIdB|

10-6

10-5

10-4

10-3

10-2

10-1

100

CCDF Ao

I (m

s)

Time (s)

10 samples50 samples100 samples

Ground-truthEstimatedConfidence Interval

Past AoI and power/RB allocation observation 1

AoI

Time

predicted AoIRB

Time

AoI prediction via GPR2

Power/RB allocation3

Fig. 2. Tail error distribution between the actual AoI and its estimatedvalue via GPR, in a V2V communication scenario.

agents may increase if they do not understand the otheragents’ reasoning. The human-robot interaction (HRI) shouldtherefore be closely investigated. In high-precision controlapplications involving multiple perceptual modalities (e.g.,vision, touch, Lidar, etc.), the perceptual relationships andtheir integrated resolutions measured using the just notice-able difference (JND) ought to be considered [12].

The following subsections discuss some of the issuesraised in R1-R3 in vehicle-to-vehicle (V2V) and virtual re-ality (VR)/augmented reality (AR) scenarios.

2.2 Use Cases

2.2.1 Predictive AoI for Ultra-Reliable V2V Communication

Ensuring the freshness of safety messages is crucial in V2Vcommunication, which is measured using the notion of AoI.AoI is defined as the time duration from the message gen-eration to reception [11]. Estimating future AoI is howevera daunting task, as it depends on past resource allocationdecisions and channel dynamics. To overcome this difficulty,GPR can be utilized as follows.

Scenario. There are 20 transmitting-receiving vehicle pairsdriving in a Manhattan grid scenario. Under this time-varying V2V channel, every transmitter locally determinesits transmission power and resource block (RB) selection,such that the receiver’s AoI is bounded by a predefinedthreshold with a target reliability. To this end, each trans-mitter runs GPR by feeding its past AoI and RB selections,yielding the next transmission power and RB selection.

Results. Fig. 2 plots the tail distribution of the error be-tween the true and estimated AoI for a given power andRB decision. The more samples are used, the sharper the

0 2 4 6 8 10106

0

2

4

6

8

10 107

NOMANOMA + predictionOMAOMA + prediction

NOMA

OMA

Max

imize

d Ra

te

of Link 2

(nat

s/se

c)R

⇤ 2,j

<latexit sha1_base64="ssWlOmlskwfgybV9/jY5p5Jmhhc=">AAAXPXicndjbbuO4GQdw73bb7qan2RbIzQILo5kBMot0YG9bFBigwCZ2zmfn4ByUGBRF2YpFSSNROQyhvkRv22fpc/QBelf0trelJIp/Scn2Yg3MWPx9HylS+nRw7Mj3EtHr/fOTT3/02Y9/8tPPv1j42c9/8ctfvfry1+dJmMaUndHQD+MLmyTM9wJ2Jjzhs4soZoTbPhvb80EeH9+zOPHC4FQ8ReyGk2nguR4lQtHlaCK/XbnLbr+ZvFrqvesVn+7zjb7eWOroz9Hky8WvLSekKWeBoD5Jkut+LxI3ksTCoz7LFhYWrDRhEaFzMmXSJQF9mjnxSpdFietNy++VLuGJmPHimxMxKzaSJ24XG24YiGSlm6S26pHGbKVbLDhrjCxmMVONWAhi5/utxa6DkDh3aaKmRT3RjEmnGL5pLFDriUk7lYY8X6ZCL6B+6jA5Y8RhrYnw1BdeHD401famiYhT1XnBCtiDmLEwZlzq70ye6o1GVPUNwgefOVNW7PhaB27kaiuy8KbRz5+GsacOaL2HseYuHr2wkVa0GylU1VUtY5A3mwk+8epjDIp2MyXMj1hefvU8YDvZ8cSzXG3t1DtGhSqKZm6FzWS1fha3xjXWSHWY6wXtOQyBjWT2SHjk12ewrqWVxmLqJc08TY1En3FOMrlXfLWWG4e+T+KnTC2y2mxkBKEgrWkfVNRIjOJQXSf103akpZ0WhUm56DzDNBpZ6h+J55kcld+NWBL6aWtGJxU1E1O1XrWeWp6WZsUmKjEqJ7SK7ednJJOW7XZfPBX54t0w5mWKWbi6itSJt8rVSGkFoRc46vLq5lnl2t5bs0Rd00z23v1Rdcny6znv84E58rVl++qSTT6kJGavszKgdhW6GEpajEez/EiG7vusm9WzkvmzvJM5E3TWDYtJNnqwwNFDz1zP97v5DDK9gFqsmOw30spzsr/kSZa6SeYZIvbu8yeLlQbJ3It+WN/7vOvvI1EdhnVp5ffvxJXr1URPtg9GRvOGCdS9xtv19JE5wr60fOYKnRVLK/ams6q5XAaXdfOtjr7Vbd8u45asuts6w6p2e11mXOvmjY7f6Bt2fu8ngaNOkCo7dZbUE8LO7/x6cjZX5VI8ldS14GTyd8WnuxaG87xqFHU1Vfub5XOaEXWiffWYdkg2sU0kbUVSHaFELVuwR6EOzSAj1aY5dBFVz6RoQm9lCMrrqcTl3tuKR3I0sZggVbNIKqmZV+MQUy/m1ZxkdWCrWPk9kct55xVhRhyUJ5cSXy2h2su+VHvZN02eN3nV3EOPvfqyRmpVspfdmmoZZfXwoB0ekHqCw4r+/e/p77BBO1zvrwozkNaD5zDh+eoYWWWlFjFRHhhRtX0nTNX9xYwzzG4tpq4ovavn0UiHUjc2vDFCGdgtt5Gfq751FNWh7klKX5t52y+m2PUU5rqycLWRtatf5NV93b+RZd9axS/1ixEaybafsmfZBer0H3z1nKMmzs3avEDat3pRXoA1h6lAQDVMZJjK4aTkNDJoG7RnBiODETXoGHSCCg9SeTCRGLRiB+xgbqNUVfrz7JEDrmWPUzm+bc937BjELEQqxQvjCgdcGzeV7UEd2R7xvhTblfe1k6DJnIMt3W/LHHxby9qauUW4mkYbFbnl6VQjuWaq+lYnT2NDodCmtiqk6sLUJ8EMF380u7jaKMrsjSom3+n64YN64VIvsHpyT+p/+f7P1VyJNPMg+cF5063WYNxGWVEohTpQB8oYmNWuRlfWV17xFDqFzqAzqAf1oHfQO+gcOof6UB/KoRwaQOsXGDSERlBUoP0B+gEaQ2NoAk2gAopL2U6hKfQeeg99gD5AH6GP0CfoE/Qj9CO0B+0VtzdddpREniB+12dC/dhIdPYqslcxxhp0DTqADqBD6BC6Dl2HbkA3oJvQTegWdAu6Dd2G7kB3oLvQXegedA+6D92HHkAPoIfQQ+gR9Ah6DD2GjqB4nNsn0BPoKfQUegY9g55Dz6Fj6Bh6Ab2AXkIvoVfQK11TRdP+P6XFTWnZtdLia1CUFh9AUVp8CEVp8XUoSotvQFFafBOK0uJbUJQW34aitPgOFKXFd6EoLb4HRWnxfShKix9AUVr8EIrS4kdQlBY/hqK0+AiK0uInUJQWP4WitPgZFKXFz6EoLT6GorT4BRSlxS+hKC1+Ba1Ka0B8bxqTaObRl0uLruLNa9U8g9eA5jFPX3rTp0Pg0OA60PxspBtA82Cnm8BNg1tA895Bt4HbBneAOwZ3gbsGX/rRQfeB5scKPQAeGDwEHho8Ah4ZPAYeGxwBzc8KegI8MXgKPDV4Bjwz+NIrMx0DxwYvgBcGL4GXBq+AVwYdoHoDmrxa6rf/fvx84/zbd/3eu/7xH5a+W9F/W/6881Xnt53lTr/zp853na3OUeesQzu889fO3zp/X/zH4r8W/734nzL10090n990Gp/F//4PWm/wRA==</latexit><latexit sha1_base64="ssWlOmlskwfgybV9/jY5p5Jmhhc=">AAAXPXicndjbbuO4GQdw73bb7qan2RbIzQILo5kBMot0YG9bFBigwCZ2zmfn4ByUGBRF2YpFSSNROQyhvkRv22fpc/QBelf0trelJIp/Scn2Yg3MWPx9HylS+nRw7Mj3EtHr/fOTT3/02Y9/8tPPv1j42c9/8ctfvfry1+dJmMaUndHQD+MLmyTM9wJ2Jjzhs4soZoTbPhvb80EeH9+zOPHC4FQ8ReyGk2nguR4lQtHlaCK/XbnLbr+ZvFrqvesVn+7zjb7eWOroz9Hky8WvLSekKWeBoD5Jkut+LxI3ksTCoz7LFhYWrDRhEaFzMmXSJQF9mjnxSpdFietNy++VLuGJmPHimxMxKzaSJ24XG24YiGSlm6S26pHGbKVbLDhrjCxmMVONWAhi5/utxa6DkDh3aaKmRT3RjEmnGL5pLFDriUk7lYY8X6ZCL6B+6jA5Y8RhrYnw1BdeHD401famiYhT1XnBCtiDmLEwZlzq70ye6o1GVPUNwgefOVNW7PhaB27kaiuy8KbRz5+GsacOaL2HseYuHr2wkVa0GylU1VUtY5A3mwk+8epjDIp2MyXMj1hefvU8YDvZ8cSzXG3t1DtGhSqKZm6FzWS1fha3xjXWSHWY6wXtOQyBjWT2SHjk12ewrqWVxmLqJc08TY1En3FOMrlXfLWWG4e+T+KnTC2y2mxkBKEgrWkfVNRIjOJQXSf103akpZ0WhUm56DzDNBpZ6h+J55kcld+NWBL6aWtGJxU1E1O1XrWeWp6WZsUmKjEqJ7SK7ednJJOW7XZfPBX54t0w5mWKWbi6itSJt8rVSGkFoRc46vLq5lnl2t5bs0Rd00z23v1Rdcny6znv84E58rVl++qSTT6kJGavszKgdhW6GEpajEez/EiG7vusm9WzkvmzvJM5E3TWDYtJNnqwwNFDz1zP97v5DDK9gFqsmOw30spzsr/kSZa6SeYZIvbu8yeLlQbJ3It+WN/7vOvvI1EdhnVp5ffvxJXr1URPtg9GRvOGCdS9xtv19JE5wr60fOYKnRVLK/ams6q5XAaXdfOtjr7Vbd8u45asuts6w6p2e11mXOvmjY7f6Bt2fu8ngaNOkCo7dZbUE8LO7/x6cjZX5VI8ldS14GTyd8WnuxaG87xqFHU1Vfub5XOaEXWiffWYdkg2sU0kbUVSHaFELVuwR6EOzSAj1aY5dBFVz6RoQm9lCMrrqcTl3tuKR3I0sZggVbNIKqmZV+MQUy/m1ZxkdWCrWPk9kct55xVhRhyUJ5cSXy2h2su+VHvZN02eN3nV3EOPvfqyRmpVspfdmmoZZfXwoB0ekHqCw4r+/e/p77BBO1zvrwozkNaD5zDh+eoYWWWlFjFRHhhRtX0nTNX9xYwzzG4tpq4ovavn0UiHUjc2vDFCGdgtt5Gfq751FNWh7klKX5t52y+m2PUU5rqycLWRtatf5NV93b+RZd9axS/1ixEaybafsmfZBer0H3z1nKMmzs3avEDat3pRXoA1h6lAQDVMZJjK4aTkNDJoG7RnBiODETXoGHSCCg9SeTCRGLRiB+xgbqNUVfrz7JEDrmWPUzm+bc937BjELEQqxQvjCgdcGzeV7UEd2R7xvhTblfe1k6DJnIMt3W/LHHxby9qauUW4mkYbFbnl6VQjuWaq+lYnT2NDodCmtiqk6sLUJ8EMF380u7jaKMrsjSom3+n64YN64VIvsHpyT+p/+f7P1VyJNPMg+cF5063WYNxGWVEohTpQB8oYmNWuRlfWV17xFDqFzqAzqAf1oHfQO+gcOof6UB/KoRwaQOsXGDSERlBUoP0B+gEaQ2NoAk2gAopL2U6hKfQeeg99gD5AH6GP0CfoE/Qj9CO0B+0VtzdddpREniB+12dC/dhIdPYqslcxxhp0DTqADqBD6BC6Dl2HbkA3oJvQTegWdAu6Dd2G7kB3oLvQXegedA+6D92HHkAPoIfQQ+gR9Ah6DD2GjqB4nNsn0BPoKfQUegY9g55Dz6Fj6Bh6Ab2AXkIvoVfQK11TRdP+P6XFTWnZtdLia1CUFh9AUVp8CEVp8XUoSotvQFFafBOK0uJbUJQW34aitPgOFKXFd6EoLb4HRWnxfShKix9AUVr8EIrS4kdQlBY/hqK0+AiK0uInUJQWP4WitPgZFKXFz6EoLT6GorT4BRSlxS+hKC1+Ba1Ka0B8bxqTaObRl0uLruLNa9U8g9eA5jFPX3rTp0Pg0OA60PxspBtA82Cnm8BNg1tA895Bt4HbBneAOwZ3gbsGX/rRQfeB5scKPQAeGDwEHho8Ah4ZPAYeGxwBzc8KegI8MXgKPDV4Bjwz+NIrMx0DxwYvgBcGL4GXBq+AVwYdoHoDmrxa6rf/fvx84/zbd/3eu/7xH5a+W9F/W/6881Xnt53lTr/zp853na3OUeesQzu889fO3zp/X/zH4r8W/734nzL10090n990Gp/F//4PWm/wRA==</latexit><latexit sha1_base64="ssWlOmlskwfgybV9/jY5p5Jmhhc=">AAAXPXicndjbbuO4GQdw73bb7qan2RbIzQILo5kBMot0YG9bFBigwCZ2zmfn4ByUGBRF2YpFSSNROQyhvkRv22fpc/QBelf0trelJIp/Scn2Yg3MWPx9HylS+nRw7Mj3EtHr/fOTT3/02Y9/8tPPv1j42c9/8ctfvfry1+dJmMaUndHQD+MLmyTM9wJ2Jjzhs4soZoTbPhvb80EeH9+zOPHC4FQ8ReyGk2nguR4lQtHlaCK/XbnLbr+ZvFrqvesVn+7zjb7eWOroz9Hky8WvLSekKWeBoD5Jkut+LxI3ksTCoz7LFhYWrDRhEaFzMmXSJQF9mjnxSpdFietNy++VLuGJmPHimxMxKzaSJ24XG24YiGSlm6S26pHGbKVbLDhrjCxmMVONWAhi5/utxa6DkDh3aaKmRT3RjEmnGL5pLFDriUk7lYY8X6ZCL6B+6jA5Y8RhrYnw1BdeHD401famiYhT1XnBCtiDmLEwZlzq70ye6o1GVPUNwgefOVNW7PhaB27kaiuy8KbRz5+GsacOaL2HseYuHr2wkVa0GylU1VUtY5A3mwk+8epjDIp2MyXMj1hefvU8YDvZ8cSzXG3t1DtGhSqKZm6FzWS1fha3xjXWSHWY6wXtOQyBjWT2SHjk12ewrqWVxmLqJc08TY1En3FOMrlXfLWWG4e+T+KnTC2y2mxkBKEgrWkfVNRIjOJQXSf103akpZ0WhUm56DzDNBpZ6h+J55kcld+NWBL6aWtGJxU1E1O1XrWeWp6WZsUmKjEqJ7SK7ednJJOW7XZfPBX54t0w5mWKWbi6itSJt8rVSGkFoRc46vLq5lnl2t5bs0Rd00z23v1Rdcny6znv84E58rVl++qSTT6kJGavszKgdhW6GEpajEez/EiG7vusm9WzkvmzvJM5E3TWDYtJNnqwwNFDz1zP97v5DDK9gFqsmOw30spzsr/kSZa6SeYZIvbu8yeLlQbJ3It+WN/7vOvvI1EdhnVp5ffvxJXr1URPtg9GRvOGCdS9xtv19JE5wr60fOYKnRVLK/ams6q5XAaXdfOtjr7Vbd8u45asuts6w6p2e11mXOvmjY7f6Bt2fu8ngaNOkCo7dZbUE8LO7/x6cjZX5VI8ldS14GTyd8WnuxaG87xqFHU1Vfub5XOaEXWiffWYdkg2sU0kbUVSHaFELVuwR6EOzSAj1aY5dBFVz6RoQm9lCMrrqcTl3tuKR3I0sZggVbNIKqmZV+MQUy/m1ZxkdWCrWPk9kct55xVhRhyUJ5cSXy2h2su+VHvZN02eN3nV3EOPvfqyRmpVspfdmmoZZfXwoB0ekHqCw4r+/e/p77BBO1zvrwozkNaD5zDh+eoYWWWlFjFRHhhRtX0nTNX9xYwzzG4tpq4ovavn0UiHUjc2vDFCGdgtt5Gfq751FNWh7klKX5t52y+m2PUU5rqycLWRtatf5NV93b+RZd9axS/1ixEaybafsmfZBer0H3z1nKMmzs3avEDat3pRXoA1h6lAQDVMZJjK4aTkNDJoG7RnBiODETXoGHSCCg9SeTCRGLRiB+xgbqNUVfrz7JEDrmWPUzm+bc937BjELEQqxQvjCgdcGzeV7UEd2R7xvhTblfe1k6DJnIMt3W/LHHxby9qauUW4mkYbFbnl6VQjuWaq+lYnT2NDodCmtiqk6sLUJ8EMF380u7jaKMrsjSom3+n64YN64VIvsHpyT+p/+f7P1VyJNPMg+cF5063WYNxGWVEohTpQB8oYmNWuRlfWV17xFDqFzqAzqAf1oHfQO+gcOof6UB/KoRwaQOsXGDSERlBUoP0B+gEaQ2NoAk2gAopL2U6hKfQeeg99gD5AH6GP0CfoE/Qj9CO0B+0VtzdddpREniB+12dC/dhIdPYqslcxxhp0DTqADqBD6BC6Dl2HbkA3oJvQTegWdAu6Dd2G7kB3oLvQXegedA+6D92HHkAPoIfQQ+gR9Ah6DD2GjqB4nNsn0BPoKfQUegY9g55Dz6Fj6Bh6Ab2AXkIvoVfQK11TRdP+P6XFTWnZtdLia1CUFh9AUVp8CEVp8XUoSotvQFFafBOK0uJbUJQW34aitPgOFKXFd6EoLb4HRWnxfShKix9AUVr8EIrS4kdQlBY/hqK0+AiK0uInUJQWP4WitPgZFKXFz6EoLT6GorT4BRSlxS+hKC1+Ba1Ka0B8bxqTaObRl0uLruLNa9U8g9eA5jFPX3rTp0Pg0OA60PxspBtA82Cnm8BNg1tA895Bt4HbBneAOwZ3gbsGX/rRQfeB5scKPQAeGDwEHho8Ah4ZPAYeGxwBzc8KegI8MXgKPDV4Bjwz+NIrMx0DxwYvgBcGL4GXBq+AVwYdoHoDmrxa6rf/fvx84/zbd/3eu/7xH5a+W9F/W/6881Xnt53lTr/zp853na3OUeesQzu889fO3zp/X/zH4r8W/734nzL10090n990Gp/F//4PWm/wRA==</latexit><latexit sha1_base64="ssWlOmlskwfgybV9/jY5p5Jmhhc=">AAAXPXicndjbbuO4GQdw73bb7qan2RbIzQILo5kBMot0YG9bFBigwCZ2zmfn4ByUGBRF2YpFSSNROQyhvkRv22fpc/QBelf0trelJIp/Scn2Yg3MWPx9HylS+nRw7Mj3EtHr/fOTT3/02Y9/8tPPv1j42c9/8ctfvfry1+dJmMaUndHQD+MLmyTM9wJ2Jjzhs4soZoTbPhvb80EeH9+zOPHC4FQ8ReyGk2nguR4lQtHlaCK/XbnLbr+ZvFrqvesVn+7zjb7eWOroz9Hky8WvLSekKWeBoD5Jkut+LxI3ksTCoz7LFhYWrDRhEaFzMmXSJQF9mjnxSpdFietNy++VLuGJmPHimxMxKzaSJ24XG24YiGSlm6S26pHGbKVbLDhrjCxmMVONWAhi5/utxa6DkDh3aaKmRT3RjEmnGL5pLFDriUk7lYY8X6ZCL6B+6jA5Y8RhrYnw1BdeHD401famiYhT1XnBCtiDmLEwZlzq70ye6o1GVPUNwgefOVNW7PhaB27kaiuy8KbRz5+GsacOaL2HseYuHr2wkVa0GylU1VUtY5A3mwk+8epjDIp2MyXMj1hefvU8YDvZ8cSzXG3t1DtGhSqKZm6FzWS1fha3xjXWSHWY6wXtOQyBjWT2SHjk12ewrqWVxmLqJc08TY1En3FOMrlXfLWWG4e+T+KnTC2y2mxkBKEgrWkfVNRIjOJQXSf103akpZ0WhUm56DzDNBpZ6h+J55kcld+NWBL6aWtGJxU1E1O1XrWeWp6WZsUmKjEqJ7SK7ednJJOW7XZfPBX54t0w5mWKWbi6itSJt8rVSGkFoRc46vLq5lnl2t5bs0Rd00z23v1Rdcny6znv84E58rVl++qSTT6kJGavszKgdhW6GEpajEez/EiG7vusm9WzkvmzvJM5E3TWDYtJNnqwwNFDz1zP97v5DDK9gFqsmOw30spzsr/kSZa6SeYZIvbu8yeLlQbJ3It+WN/7vOvvI1EdhnVp5ffvxJXr1URPtg9GRvOGCdS9xtv19JE5wr60fOYKnRVLK/ams6q5XAaXdfOtjr7Vbd8u45asuts6w6p2e11mXOvmjY7f6Bt2fu8ngaNOkCo7dZbUE8LO7/x6cjZX5VI8ldS14GTyd8WnuxaG87xqFHU1Vfub5XOaEXWiffWYdkg2sU0kbUVSHaFELVuwR6EOzSAj1aY5dBFVz6RoQm9lCMrrqcTl3tuKR3I0sZggVbNIKqmZV+MQUy/m1ZxkdWCrWPk9kct55xVhRhyUJ5cSXy2h2su+VHvZN02eN3nV3EOPvfqyRmpVspfdmmoZZfXwoB0ekHqCw4r+/e/p77BBO1zvrwozkNaD5zDh+eoYWWWlFjFRHhhRtX0nTNX9xYwzzG4tpq4ovavn0UiHUjc2vDFCGdgtt5Gfq751FNWh7klKX5t52y+m2PUU5rqycLWRtatf5NV93b+RZd9axS/1ixEaybafsmfZBer0H3z1nKMmzs3avEDat3pRXoA1h6lAQDVMZJjK4aTkNDJoG7RnBiODETXoGHSCCg9SeTCRGLRiB+xgbqNUVfrz7JEDrmWPUzm+bc937BjELEQqxQvjCgdcGzeV7UEd2R7xvhTblfe1k6DJnIMt3W/LHHxby9qauUW4mkYbFbnl6VQjuWaq+lYnT2NDodCmtiqk6sLUJ8EMF380u7jaKMrsjSom3+n64YN64VIvsHpyT+p/+f7P1VyJNPMg+cF5063WYNxGWVEohTpQB8oYmNWuRlfWV17xFDqFzqAzqAf1oHfQO+gcOof6UB/KoRwaQOsXGDSERlBUoP0B+gEaQ2NoAk2gAopL2U6hKfQeeg99gD5AH6GP0CfoE/Qj9CO0B+0VtzdddpREniB+12dC/dhIdPYqslcxxhp0DTqADqBD6BC6Dl2HbkA3oJvQTegWdAu6Dd2G7kB3oLvQXegedA+6D92HHkAPoIfQQ+gR9Ah6DD2GjqB4nNsn0BPoKfQUegY9g55Dz6Fj6Bh6Ab2AXkIvoVfQK11TRdP+P6XFTWnZtdLia1CUFh9AUVp8CEVp8XUoSotvQFFafBOK0uJbUJQW34aitPgOFKXFd6EoLb4HRWnxfShKix9AUVr8EIrS4kdQlBY/hqK0+AiK0uInUJQWP4WitPgZFKXFz6EoLT6GorT4BRSlxS+hKC1+Ba1Ka0B8bxqTaObRl0uLruLNa9U8g9eA5jFPX3rTp0Pg0OA60PxspBtA82Cnm8BNg1tA895Bt4HbBneAOwZ3gbsGX/rRQfeB5scKPQAeGDwEHho8Ah4ZPAYeGxwBzc8KegI8MXgKPDV4Bjwz+NIrMx0DxwYvgBcGL4GXBq+AVwYdoHoDmrxa6rf/fvx84/zbd/3eu/7xH5a+W9F/W/6881Xnt53lTr/zp853na3OUeesQzu889fO3zp/X/zH4r8W/734nzL10090n990Gp/F//4PWm/wRA==</latexit>

Target Rate of Link1 (nats/sec)R̂1<latexit sha1_base64="Y1I26M8yZ6nwjySz3KbAO/TJHeM=">AAAXPXicndjbbuO4GQdw7/a0TU+zLZCbAoXRzACZIh3Yuy0KDFBgEzvnxEmcg3NQYlAUZWssShqJymEI9SV62z5Ln6MP0Luit70tJVH8S0q2F2tgxuLv+0iR0qeDY0e+l4he75+fff697//ghz/64sdLP/npz37+i1df/vIiCdOYsnMa+mF8aZOE+V7AzoUnfHYZxYxw22cTezHI45N7FideGJyJp4jdcjILPNejRCi6suZEyHE27U9frfTe9YpP9/lGX2+sdPTnePrl8m8sJ6QpZ4GgPkmSm34vEreSxMKjPsuWlpasNGERoQsyY9IlAX2aO/Fal0WJ683K77Uu4YmY8+KbEzEvNpInbhcbbhiIZK2bpLbqkcZsrVssOGuMLOYxU41YCGLn+63FboKQOB/SRE2LeqIZk04xfNNYoNYTk3YqDXm+TIVeQP3UYXLOiMNaE+GpL7w4fGiq7c0SEaeq85IVsAcxZ2HMuNTfmTzTG42o6huEDz5zZqzY8Y0O3Mr1VmTpTaOfPwtjTx3Qeg9jzV08emEjrWg3Uqiqq1rGIG82E3zi1ccYFO1mSpgfsbz86nnAdrLjiWe52tqpHxgVqiiauRU2k9X6Wdwa11gj1WGuF7TnMAQ2ktkj4ZFfn8GmllYai6mXNPM0NRJ9xjnJ5EHx1VpuHPo+iZ8ytchqs5ERhIK0pj2qqJEYxaG6Tuqn7VhLOy0Kk3LReYZpNLLUPxIvMjkuvxuxJPTT1oxOK2ompmq9aj21PC3Nik1UYlROaB3bz89IJi3b7b54KvLFu2HMyxSzcHUVqRNvlauR0gpCL3DU5dXNs8q1vbfmibqmmey9+6PqkuXXc97nI3Pka8v21SWbfExJzF5nZUDtKnQxlLQYj+b5kQzd91k3q2cli2d5pwsm6LwbFpNs9GCBo4eeu57vd/MZZHoBtVgx2d9JK8/J/pInWeommWeI2LvPnyxWGiQLL/pufe/zrl9HojoMm9LK79+JKzeriZ7ujsZG84YJ1L3Gu/X0sTnCvrR85gqdFUsr9mbzqrlaBld1862OvtVt3y7jlqy62zrDqnZ7U2bc6Oatjt/qG3Z+7yeBo06QKjt1ltQTws7v/HpyNlflUjyV1LXgZPL3xae7EYaLvGoUdTVV+5vnc8ofu5avHtMOyaa2iaStSKojlKhlC/Yo1KEZZKTaNIcuouqZFE3pnQxBeT2VuNp7W/FYjqcWE6RqFkklNfNqHGLqxbyak6wObBUrv6dyNe+8JsyIg/LkUuKrJVR7OZRqL4emyfMmr5oH6HFQX9ZYrUr2sjtTLeOsHh60wwNST3BY0b//Lf0dNmiH6/1VYQbSevAcJjxfHSOrrNQiJsoDI6q274Spur+YcYbZncXUFaV39Twa6VDqxoa3xigDu+U28nPVt46iOtQ9SelrM2/7xRS7nsJcVxauNrJ29Yu8um/6t7LsW6v4lX4xQiPZ9lP2LLtAnf6dr54L1MSFWZsXSPtOL8oLsOYwFQiohokMUzmclpxGBm2D9txgZDCiBh2DTlDhKJWjqcSgFTtgB3Mbp6rSn2ePHXAte5LKyV17vhPHIGYhUileGFc44Nq4qWwP6sj2iPel2K68r50ETeYc7Oh+O+bg21o2NswtwtU03qrILU+nGsk1U9W3OnkWGwqFNrVVIVUXpj4JZrj4k9nF9VZRZm9UMflO1w8f1AuXeoHVk3tS/8v3f67mSqSZB8kPzptutQbjNsqKQinUgTpQxsCsdjW6sr7yimfQGXQOnUM9qAf9AP0AXUAXUB/qQzmUQwNo/QKDhtAIig q0P0I/QmNoDE2gCVRAcSnbKTSF3kPvoQ/QB+gj9BH6BH2CfoJ+gvagveL2psuOksgTxO/6TKgfG4nOXkf2OsbYgG5AB9ABdAgdQjehm9At6BZ0G7oN3YHuQHehu9A96B50H7oPPYAeQA+hh9ARdAQ9gh5Bj6HH0BPoCXQMxePcPoWeQs+gZ9Bz6Dn0AnoBnUAn0EvoJfQKegW9hl7rmiqa9v8pLW5Ky66VFt+AorT4AIrS4kMoSotvQlFafAuK0uLbUJQW34GitPguFKXF96AoLb4PRWnxAyhKix9CUVp8BEVp8SMoSosfQ1Fa/ASK0uJjKEqLn0JRWvwMitLi51CUFr+AorT4BIrS4pdQlBa/gqK0+DW0Kq0B8b1ZTKK5R18uLbqON6918wzeAJrHPH3pTZ8OgUODm0Dzs5FuAc2DnW4Dtw3uAM17B90F7hrcA+4Z3AfuG3zpRwc9BJofK3QEHBk8Ah4ZPAYeGzwBnhgcA83PCnoKPDV4BjwzeA48N/jSKzOdACcGL4GXBq+AVwavgdcGHaB6A5q+Wum3/378fOPiq3f93rv+yR9WvlnTf1v+ovPrzm87q51+50+dbzo7nePOeYd2eOevnb91/r78j+V/Lf97+T9l6uef6T6/6jQ+y//9Hzzg8L4=</latexit><latexit sha1_base64="Y1I26M8yZ6nwjySz3KbAO/TJHeM=">AAAXPXicndjbbuO4GQdw7/a0TU+zLZCbAoXRzACZIh3Yuy0KDFBgEzvnxEmcg3NQYlAUZWssShqJymEI9SV62z5Ln6MP0Luit70tJVH8S0q2F2tgxuLv+0iR0qeDY0e+l4he75+fff697//ghz/64sdLP/npz37+i1df/vIiCdOYsnMa+mF8aZOE+V7AzoUnfHYZxYxw22cTezHI45N7FideGJyJp4jdcjILPNejRCi6suZEyHE27U9frfTe9YpP9/lGX2+sdPTnePrl8m8sJ6QpZ4GgPkmSm34vEreSxMKjPsuWlpasNGERoQsyY9IlAX2aO/Fal0WJ683K77Uu4YmY8+KbEzEvNpInbhcbbhiIZK2bpLbqkcZsrVssOGuMLOYxU41YCGLn+63FboKQOB/SRE2LeqIZk04xfNNYoNYTk3YqDXm+TIVeQP3UYXLOiMNaE+GpL7w4fGiq7c0SEaeq85IVsAcxZ2HMuNTfmTzTG42o6huEDz5zZqzY8Y0O3Mr1VmTpTaOfPwtjTx3Qeg9jzV08emEjrWg3Uqiqq1rGIG82E3zi1ccYFO1mSpgfsbz86nnAdrLjiWe52tqpHxgVqiiauRU2k9X6Wdwa11gj1WGuF7TnMAQ2ktkj4ZFfn8GmllYai6mXNPM0NRJ9xjnJ5EHx1VpuHPo+iZ8ytchqs5ERhIK0pj2qqJEYxaG6Tuqn7VhLOy0Kk3LReYZpNLLUPxIvMjkuvxuxJPTT1oxOK2ompmq9aj21PC3Nik1UYlROaB3bz89IJi3b7b54KvLFu2HMyxSzcHUVqRNvlauR0gpCL3DU5dXNs8q1vbfmibqmmey9+6PqkuXXc97nI3Pka8v21SWbfExJzF5nZUDtKnQxlLQYj+b5kQzd91k3q2cli2d5pwsm6LwbFpNs9GCBo4eeu57vd/MZZHoBtVgx2d9JK8/J/pInWeommWeI2LvPnyxWGiQLL/pufe/zrl9HojoMm9LK79+JKzeriZ7ujsZG84YJ1L3Gu/X0sTnCvrR85gqdFUsr9mbzqrlaBld1862OvtVt3y7jlqy62zrDqnZ7U2bc6Oatjt/qG3Z+7yeBo06QKjt1ltQTws7v/HpyNlflUjyV1LXgZPL3xae7EYaLvGoUdTVV+5vnc8ofu5avHtMOyaa2iaStSKojlKhlC/Yo1KEZZKTaNIcuouqZFE3pnQxBeT2VuNp7W/FYjqcWE6RqFkklNfNqHGLqxbyak6wObBUrv6dyNe+8JsyIg/LkUuKrJVR7OZRqL4emyfMmr5oH6HFQX9ZYrUr2sjtTLeOsHh60wwNST3BY0b//Lf0dNmiH6/1VYQbSevAcJjxfHSOrrNQiJsoDI6q274Spur+YcYbZncXUFaV39Twa6VDqxoa3xigDu+U28nPVt46iOtQ9SelrM2/7xRS7nsJcVxauNrJ29Yu8um/6t7LsW6v4lX4xQiPZ9lP2LLtAnf6dr54L1MSFWZsXSPtOL8oLsOYwFQiohokMUzmclpxGBm2D9txgZDCiBh2DTlDhKJWjqcSgFTtgB3Mbp6rSn2ePHXAte5LKyV17vhPHIGYhUileGFc44Nq4qWwP6sj2iPel2K68r50ETeYc7Oh+O+bg21o2NswtwtU03qrILU+nGsk1U9W3OnkWGwqFNrVVIVUXpj4JZrj4k9nF9VZRZm9UMflO1w8f1AuXeoHVk3tS/8v3f67mSqSZB8kPzptutQbjNsqKQinUgTpQxsCsdjW6sr7yimfQGXQOnUM9qAf9AP0AXUAXUB/qQzmUQwNo/QKDhtAIig q0P0I/QmNoDE2gCVRAcSnbKTSF3kPvoQ/QB+gj9BH6BH2CfoJ+gvagveL2psuOksgTxO/6TKgfG4nOXkf2OsbYgG5AB9ABdAgdQjehm9At6BZ0G7oN3YHuQHehu9A96B50H7oPPYAeQA+hh9ARdAQ9gh5Bj6HH0BPoCXQMxePcPoWeQs+gZ9Bz6Dn0AnoBnUAn0EvoJfQKegW9hl7rmiqa9v8pLW5Ky66VFt+AorT4AIrS4kMoSotvQlFafAuK0uLbUJQW34GitPguFKXF96AoLb4PRWnxAyhKix9CUVp8BEVp8SMoSosfQ1Fa/ASK0uJjKEqLn0JRWvwMitLi51CUFr+AorT4BIrS4pdQlBa/gqK0+DW0Kq0B8b1ZTKK5R18uLbqON6918wzeAJrHPH3pTZ8OgUODm0Dzs5FuAc2DnW4Dtw3uAM17B90F7hrcA+4Z3AfuG3zpRwc9BJofK3QEHBk8Ah4ZPAYeGzwBnhgcA83PCnoKPDV4BjwzeA48N/jSKzOdACcGL4GXBq+AVwavgdcGHaB6A5q+Wum3/378fOPiq3f93rv+yR9WvlnTf1v+ovPrzm87q51+50+dbzo7nePOeYd2eOevnb91/r78j+V/Lf97+T9l6uef6T6/6jQ+y//9Hzzg8L4=</latexit><latexit sha1_base64="Y1I26M8yZ6nwjySz3KbAO/TJHeM=">AAAXPXicndjbbuO4GQdw7/a0TU+zLZCbAoXRzACZIh3Yuy0KDFBgEzvnxEmcg3NQYlAUZWssShqJymEI9SV62z5Ln6MP0Luit70tJVH8S0q2F2tgxuLv+0iR0qeDY0e+l4he75+fff697//ghz/64sdLP/npz37+i1df/vIiCdOYsnMa+mF8aZOE+V7AzoUnfHYZxYxw22cTezHI45N7FideGJyJp4jdcjILPNejRCi6suZEyHE27U9frfTe9YpP9/lGX2+sdPTnePrl8m8sJ6QpZ4GgPkmSm34vEreSxMKjPsuWlpasNGERoQsyY9IlAX2aO/Fal0WJ683K77Uu4YmY8+KbEzEvNpInbhcbbhiIZK2bpLbqkcZsrVssOGuMLOYxU41YCGLn+63FboKQOB/SRE2LeqIZk04xfNNYoNYTk3YqDXm+TIVeQP3UYXLOiMNaE+GpL7w4fGiq7c0SEaeq85IVsAcxZ2HMuNTfmTzTG42o6huEDz5zZqzY8Y0O3Mr1VmTpTaOfPwtjTx3Qeg9jzV08emEjrWg3Uqiqq1rGIG82E3zi1ccYFO1mSpgfsbz86nnAdrLjiWe52tqpHxgVqiiauRU2k9X6Wdwa11gj1WGuF7TnMAQ2ktkj4ZFfn8GmllYai6mXNPM0NRJ9xjnJ5EHx1VpuHPo+iZ8ytchqs5ERhIK0pj2qqJEYxaG6Tuqn7VhLOy0Kk3LReYZpNLLUPxIvMjkuvxuxJPTT1oxOK2ompmq9aj21PC3Nik1UYlROaB3bz89IJi3b7b54KvLFu2HMyxSzcHUVqRNvlauR0gpCL3DU5dXNs8q1vbfmibqmmey9+6PqkuXXc97nI3Pka8v21SWbfExJzF5nZUDtKnQxlLQYj+b5kQzd91k3q2cli2d5pwsm6LwbFpNs9GCBo4eeu57vd/MZZHoBtVgx2d9JK8/J/pInWeommWeI2LvPnyxWGiQLL/pufe/zrl9HojoMm9LK79+JKzeriZ7ujsZG84YJ1L3Gu/X0sTnCvrR85gqdFUsr9mbzqrlaBld1862OvtVt3y7jlqy62zrDqnZ7U2bc6Oatjt/qG3Z+7yeBo06QKjt1ltQTws7v/HpyNlflUjyV1LXgZPL3xae7EYaLvGoUdTVV+5vnc8ofu5avHtMOyaa2iaStSKojlKhlC/Yo1KEZZKTaNIcuouqZFE3pnQxBeT2VuNp7W/FYjqcWE6RqFkklNfNqHGLqxbyak6wObBUrv6dyNe+8JsyIg/LkUuKrJVR7OZRqL4emyfMmr5oH6HFQX9ZYrUr2sjtTLeOsHh60wwNST3BY0b//Lf0dNmiH6/1VYQbSevAcJjxfHSOrrNQiJsoDI6q274Spur+YcYbZncXUFaV39Twa6VDqxoa3xigDu+U28nPVt46iOtQ9SelrM2/7xRS7nsJcVxauNrJ29Yu8um/6t7LsW6v4lX4xQiPZ9lP2LLtAnf6dr54L1MSFWZsXSPtOL8oLsOYwFQiohokMUzmclpxGBm2D9txgZDCiBh2DTlDhKJWjqcSgFTtgB3Mbp6rSn2ePHXAte5LKyV17vhPHIGYhUileGFc44Nq4qWwP6sj2iPel2K68r50ETeYc7Oh+O+bg21o2NswtwtU03qrILU+nGsk1U9W3OnkWGwqFNrVVIVUXpj4JZrj4k9nF9VZRZm9UMflO1w8f1AuXeoHVk3tS/8v3f67mSqSZB8kPzptutQbjNsqKQinUgTpQxsCsdjW6sr7yimfQGXQOnUM9qAf9AP0AXUAXUB/qQzmUQwNo/QKDhtAIig q0P0I/QmNoDE2gCVRAcSnbKTSF3kPvoQ/QB+gj9BH6BH2CfoJ+gvagveL2psuOksgTxO/6TKgfG4nOXkf2OsbYgG5AB9ABdAgdQjehm9At6BZ0G7oN3YHuQHehu9A96B50H7oPPYAeQA+hh9ARdAQ9gh5Bj6HH0BPoCXQMxePcPoWeQs+gZ9Bz6Dn0AnoBnUAn0EvoJfQKegW9hl7rmiqa9v8pLW5Ky66VFt+AorT4AIrS4kMoSotvQlFafAuK0uLbUJQW34GitPguFKXF96AoLb4PRWnxAyhKix9CUVp8BEVp8SMoSosfQ1Fa/ASK0uJjKEqLn0JRWvwMitLi51CUFr+AorT4BIrS4pdQlBa/gqK0+DW0Kq0B8b1ZTKK5R18uLbqON6918wzeAJrHPH3pTZ8OgUODm0Dzs5FuAc2DnW4Dtw3uAM17B90F7hrcA+4Z3AfuG3zpRwc9BJofK3QEHBk8Ah4ZPAYeGzwBnhgcA83PCnoKPDV4BjwzeA48N/jSKzOdACcGL4GXBq+AVwavgdcGHaB6A5q+Wum3/378fOPiq3f93rv+yR9WvlnTf1v+ovPrzm87q51+50+dbzo7nePOeYd2eOevnb91/r78j+V/Lf97+T9l6uef6T6/6jQ+y//9Hzzg8L4=</latexit><latexit sha1_base64="Y1I26M8yZ6nwjySz3KbAO/TJHeM=">AAAXPXicndjbbuO4GQdw7/a0TU+zLZCbAoXRzACZIh3Yuy0KDFBgEzvnxEmcg3NQYlAUZWssShqJymEI9SV62z5Ln6MP0Luit70tJVH8S0q2F2tgxuLv+0iR0qeDY0e+l4he75+fff697//ghz/64sdLP/npz37+i1df/vIiCdOYsnMa+mF8aZOE+V7AzoUnfHYZxYxw22cTezHI45N7FideGJyJp4jdcjILPNejRCi6suZEyHE27U9frfTe9YpP9/lGX2+sdPTnePrl8m8sJ6QpZ4GgPkmSm34vEreSxMKjPsuWlpasNGERoQsyY9IlAX2aO/Fal0WJ683K77Uu4YmY8+KbEzEvNpInbhcbbhiIZK2bpLbqkcZsrVssOGuMLOYxU41YCGLn+63FboKQOB/SRE2LeqIZk04xfNNYoNYTk3YqDXm+TIVeQP3UYXLOiMNaE+GpL7w4fGiq7c0SEaeq85IVsAcxZ2HMuNTfmTzTG42o6huEDz5zZqzY8Y0O3Mr1VmTpTaOfPwtjTx3Qeg9jzV08emEjrWg3Uqiqq1rGIG82E3zi1ccYFO1mSpgfsbz86nnAdrLjiWe52tqpHxgVqiiauRU2k9X6Wdwa11gj1WGuF7TnMAQ2ktkj4ZFfn8GmllYai6mXNPM0NRJ9xjnJ5EHx1VpuHPo+iZ8ytchqs5ERhIK0pj2qqJEYxaG6Tuqn7VhLOy0Kk3LReYZpNLLUPxIvMjkuvxuxJPTT1oxOK2ompmq9aj21PC3Nik1UYlROaB3bz89IJi3b7b54KvLFu2HMyxSzcHUVqRNvlauR0gpCL3DU5dXNs8q1vbfmibqmmey9+6PqkuXXc97nI3Pka8v21SWbfExJzF5nZUDtKnQxlLQYj+b5kQzd91k3q2cli2d5pwsm6LwbFpNs9GCBo4eeu57vd/MZZHoBtVgx2d9JK8/J/pInWeommWeI2LvPnyxWGiQLL/pufe/zrl9HojoMm9LK79+JKzeriZ7ujsZG84YJ1L3Gu/X0sTnCvrR85gqdFUsr9mbzqrlaBld1862OvtVt3y7jlqy62zrDqnZ7U2bc6Oatjt/qG3Z+7yeBo06QKjt1ltQTws7v/HpyNlflUjyV1LXgZPL3xae7EYaLvGoUdTVV+5vnc8ofu5avHtMOyaa2iaStSKojlKhlC/Yo1KEZZKTaNIcuouqZFE3pnQxBeT2VuNp7W/FYjqcWE6RqFkklNfNqHGLqxbyak6wObBUrv6dyNe+8JsyIg/LkUuKrJVR7OZRqL4emyfMmr5oH6HFQX9ZYrUr2sjtTLeOsHh60wwNST3BY0b//Lf0dNmiH6/1VYQbSevAcJjxfHSOrrNQiJsoDI6q274Spur+YcYbZncXUFaV39Twa6VDqxoa3xigDu+U28nPVt46iOtQ9SelrM2/7xRS7nsJcVxauNrJ29Yu8um/6t7LsW6v4lX4xQiPZ9lP2LLtAnf6dr54L1MSFWZsXSPtOL8oLsOYwFQiohokMUzmclpxGBm2D9txgZDCiBh2DTlDhKJWjqcSgFTtgB3Mbp6rSn2ePHXAte5LKyV17vhPHIGYhUileGFc44Nq4qWwP6sj2iPel2K68r50ETeYc7Oh+O+bg21o2NswtwtU03qrILU+nGsk1U9W3OnkWGwqFNrVVIVUXpj4JZrj4k9nF9VZRZm9UMflO1w8f1AuXeoHVk3tS/8v3f67mSqSZB8kPzptutQbjNsqKQinUgTpQxsCsdjW6sr7yimfQGXQOnUM9qAf9AP0AXUAXUB/qQzmUQwNo/QKDhtAIig q0P0I/QmNoDE2gCVRAcSnbKTSF3kPvoQ/QB+gj9BH6BH2CfoJ+gvagveL2psuOksgTxO/6TKgfG4nOXkf2OsbYgG5AB9ABdAgdQjehm9At6BZ0G7oN3YHuQHehu9A96B50H7oPPYAeQA+hh9ARdAQ9gh5Bj6HH0BPoCXQMxePcPoWeQs+gZ9Bz6Dn0AnoBnUAn0EvoJfQKegW9hl7rmiqa9v8pLW5Ky66VFt+AorT4AIrS4kMoSotvQlFafAuK0uLbUJQW34GitPguFKXF96AoLb4PRWnxAyhKix9CUVp8BEVp8SMoSosfQ1Fa/ASK0uJjKEqLn0JRWvwMitLi51CUFr+AorT4BIrS4pdQlBa/gqK0+DW0Kq0B8b1ZTKK5R18uLbqON6918wzeAJrHPH3pTZ8OgUODm0Dzs5FuAc2DnW4Dtw3uAM17B90F7hrcA+4Z3AfuG3zpRwc9BJofK3QEHBk8Ah4ZPAYeGzwBnhgcA83PCnoKPDV4BjwzeA48N/jSKzOdACcGL4GXBq+AVwavgdcGHaB6A5q+Wum3/378fOPiq3f93rv+yR9WvlnTf1v+ovPrzm87q51+50+dbzo7nePOeYd2eOevnb91/r78j+V/Lf97+T9l6uef6T6/6jQ+y//9Hzzg8L4=</latexit>

posture data

current FoV

next frame

eMBB

URLLCdeactivation

STOP

haptic object detection2

3

FoV prediction1

next FoV

Fig. 3. URLLC-eMBB rate region when URLLC resource is constantlyreserved (solid curves) or is dynamically allocated via visuo-haptic VRtraffic demand prediction (dotted curves).

tail distribution is (see R1). Furthermore, the prediction re-liability is fully characterized by the posterior distribution’svariance, which decreases with more samples (see R3).

2.2.2 VR/AR Perception-Aware Proactive Network Slicing

Supporting multimodal perceptions at a single device isbecoming increasingly important in 5G and beyond. Indeed,a mobile VR user may simultaneously look at and touch avirtual object. Such concurrent visual and haptic perceptionsshould be synchronously received at the user as experiencedin real life, so as to avoid cybersickness while increasingimmersion in virtual spaces. Since these visual and hapticmodalities have distinct rate and latency requirements, theyshould be supported through separate eMBB and URLLClinks, while mitigating their inter-modal interference. Byutilizing their perceptual relationship eMBB-URLLC linkscan be proactively sliced as follows.

Scenario. Using eMBB-URLLC links, a base station (BS)serves a downlink VR user watching a visuo-haptic interac-tive movie, while ensuring a target perceptual resolution(see R3). JND quantifies the perceptual resolution (e.g.,3 mm minimum detectable object size), which is given bythe harmonic mean of the individual links’ packet errorrates [12]. Unfortunately, satisfying the multimodal per-ception requirement consumes huge wireless resources. Toresolve this problem, we utilize the fact that haptic expe-riences are limited by touchable objects within the visualfield-of-view (FoV). Consequently, using a recurrent NNand feeding past FoVs, the BS deactivates the URLLC link,if there exists no touchable object within the future FoV.

Results. Fig. 3 shows that proactive URLLC deactivationimproves the eMBB data rate under both orthogonal and

Page 4: Extreme URLLC: Vision, Challenges, and Key Enablers · 1 Extreme URLLC: Vision, Challenges, and Key Enablers Jihong Park, Sumudu Samarakoon, Hamid Shiri, Mohamed K. Abdel-Aziz, yTakayuki

4

non-orthogonal slicing methods, particularly for a highURLLC target data rate, i.e., supporting high-resolutionhaptic experiences. The prediction horizon of FoV was5 frames ahead, corresponding to 41.7 ms under 120 Hzframe rate.

3 NON-RF AIDED URLLCSpurred by recent advances in ML and computer vision,leveraging non-RF modalities (e.g., RGB-D and cameras,Lidar, etc.) is crucial for confronting the extreme eventprediction problem, without sacrificing spectral efficiency.Compelling non-RF aided URLLC use cases include vision-based channel prediction and mobility management, vision-aided coordination and control of robotic swarms. To over-come the issue of occlusion, transferring visual modalitiesinto RF expedites channel blockage predictions withoutpilot signaling [10], allows high-precision location predic-tion and tracking [13], to mention a few. Not only that,for enabling scalable xURLLC, non-RF modalities provideyet another source of diversity-enhancements, free from RFresource constraints and negligible signaling overhead.

3.1 Challenges and OpportunitiesSmartly incorporating non-RF modalities is crucial for en-abling xURLLC with negligible overhead. This rests onaddressing the following challenges and research opportu-nities.

R4. Multimodal Fusion. Different types of data have dis-tinct spatio-temporal resolutions (e.g., image sizes, framerates, and sensing/sampling rates) and their appropriateprocessing methods (e.g., convolutional NN for vision).Efficiently fusing multiple modalities while balancing theiruseful features is a critical challenge. Split learning (SL) is apowerful framework, in which an NN consists of a sharedupper segment connected to multiple lower segments fedby different types of data. SL can effectively fuse multiplemodalities by applying different data-specific architecturesto the lower segment, while balancing the aggregatingweights at the upper segment [10].

R5. Beyond Visual Modality. Besides vision, there existother non-RF modalities to enable xURLLC. Accelerometerinformation is one possible candidate, from which mobilitypatterns can be extracted, thereby estimating blockage du-ration. Another possibility is RIS-endowed walls based onthe idea of manipulating signal amplitude, phase, reflectionangle, and polarization via RIS such that the desired signalsand interference can be engineered. To effectively fuse thesenon-RF modalities, their pros and cons should be carefullyexamined vis-a-vis RF-based URLLC.

R6. Non-RF Overhead. Utilizing non-RF data does notcome for free, and its extra energy cost for acquisition, pro-cessing, and control cannot be neglected. Indeed, to enablevision-aided channel estimation, training images need to becollected from multiple cameras to overcome each camera’slimited FoV, consuming communication energy. Extractinghidden useful features via principal component analysis(PCA) or convolutional NN entails processing energy. Bal-ancing vision and RF modalities in the fusion operations re-quires an optimization procedure that consumes additional

0 2 4 6 8 10 12 1410-3

10-2

10-1

100

CC

DF

Error |RSSdBest-RSSdB

est|

7.65 7.7 7.75 7.8 7.85 7.9Time (s)

-40

-30

-20

RFImgRF+ImgGround-truth

RSS

Time

Img

Time

mobile blockage

RSS

(dBm

)

RGB-D and RSS sequences1 Future RSS prediction2

Img

RSS

Fig. 4. Tail distribution of the error between actual mmWave RSS and itsestimated value by fusing past RSS data and RGB-D images.

computing energy. These energy footprints may negate theeffectiveness of non-RF modalities, notably compared toadvanced digital beamforming in 6G [6], [7]. Therefore, EE,defined as the ratio of the performance gain to the totalenergy consumption, should be carefully examined.

The following subsections tackle R4-R6 focusing onRGB-D image based milimeter wave (mmWave) channelprediction and ML based energy-efficient RIS use cases.

3.2 Use Cases

3.2.1 RGB-D Aided mmWave Received Power PredictionRF signals do not always have sufficient features for high-accuracy prediction. Predicting future mmWave channelsis one example, in which predictions using past RF sig-nals fail to detect sudden transitions between line-of-sight(LoS) and non-LoS (NLoS) conditions due to pedestrianblockages [10]. This is where visual modalities comes tothe rescue, namely where a sequence of camera imagescontaining sufficient features to predict channel blockagescomplements to the RF modality, as detailed next.

Scenario. Consider an RGB-D camera with 30 Hz framerate observing a 60 GHz mmWave channel that is randomlyblocked by two moving pedestrians. Our goal is to predict120 ms ahead the received power using past camera imagesand received powers observed at the same time. To thisend, a split NN is considered (see R4), comprising: 1) twoconvolutional layers that extract features from images; 2)another single-layer NN whose output dimension is thesame as the output dimension of 1); and 3) a recurrentNN layer that concatenates the outputs of 1) and 2) intoa sequence as its input, thereby performing a time-seriesprediction of the future mmWave received power.

Results. Fig. 4 shows that the received power predictionusing both images and RF signals (RF+Img) achieves the

Page 5: Extreme URLLC: Vision, Challenges, and Key Enablers · 1 Extreme URLLC: Vision, Challenges, and Key Enablers Jihong Park, Sumudu Samarakoon, Hamid Shiri, Mohamed K. Abdel-Aziz, yTakayuki

5

highest accuracy while precisely detecting the LoS/NLoStransitions. By contrast, the baseline predictions using eitherRF signals (RF) or images (Img) fail to accurately predict thetransitions or short-term channel fluctuations for a givenLoS or NLoS condition. While RF+Img is effective in mini-mizing the mean prediction error, the tail probability showsthat extremely large error occurrences are minimized underImg, calling for further optimizing the multimodal fusionusing a tail-risk minimization framework [1].

3.2.2 ML Based Energy-Efficient RISEnsuring reliable connectivity with extremely low energyconsumption is instrumental in realizing scalable xURLLC.Towards achieving this goal, RIS is a promising enabler,in which a large number of low-cost reflectors within aplanar array passively shift the phases of incident RF signals(see R5). This begs the question of how to design a low-complexity RIS controller with minimal signaling overhead, whileachieving high EE.

Scenario. An RIS with 64 elements serves a single user,by reflecting the signals transmitted from a single BS.The entire elements are equally divided and controlled byK controllers, each of which is a fully-connected 3-layer NNwith N neurons per layer. By feeding in the user location,the NN outputs either 0 or π phase shift per element. TheNN is trained via supervised learning using 650 samples,by minimizing the signal-to-noise ratio (SNR) differencebetween the proposed method and the ground truth foundvia exhaustive search. Subsequently, for a given new user’slocation, the RIS phase shift is inferred using the trained NNmodel.

Results. Fig. 5 shows that the proposed method achieveshigher EE (see R6), defined as spectral efficiency per totalenergy consumption (excluding the BS transmission power),than a random phase shifting baseline. Compared to ex-haustive search, the proposed method yields almost thesame spectral efficiency without dissipating energy as donein exhaustive search, resulting in higher EE. To furtherimprove EE, increasing the BS transmission power is shownto be effective up to a certain inflection point after whichthe bottleneck stems from the binary phase shifting, callingfor the controller’s design and optimization. Compared toa single large NN controller (Goliath), K small NN con-trollers (Davids) consume less energy that is proportionalto the number of weights (2N2/K). On the contrary, toomany Davids incur much fewer weights, reducing the NNmodel capacity. Under this energy consumption and modelcapacity trade-off, EE is maximized at K = 2.

4 CONTROL CO-DESIGNED URLLCReal-time control over wireless links is a cornerstone ap-plication in URLLC, requiring the strictest reliability andlatency targets [1], [7], [14]. Conversely, control is a domainwhere relaxing the URLLC requirements can be maximized,thereby enabling scalability. This hinges on identifying theimportance of each transmission packet in control oper-ations subject to, for example, the maximum allowabletransfer interval (MATI), the maximally allowable delay(MAD), and AoI [11]. This system design is at odds with

10-2 10-1 100 101

Transmit Power [W]

0

0.2

0.4

0.6

0.8

1

Ener

gy E

ffici

ency

[bits

J-1H

z-1]

Goliath2 Davids16 DavidsExhaustiveRandom

Number of NN Controllers1 2 4 8 16

0.83

0.84

0.85

(a) Goliath (1 large NN controller): 3N neurons, 2N2 weights

(b) Davids (K small NN controllers): 3N neurons, 2N2/K weights

Fig. 5. RIS system EE under a single large NN controller (Goliath, left)or multiple small NN controllers (Davids, right), as the BS transmissionpower increases.

5G URLLC focusing solely on over-the-air and one-waytransmission errors with equal importance for all packets.Not only that, a key requirement overlooked in 5G URLLCis stability, which makes CoCoCo of utmost importance forguaranteeing physical stability [15]. Indeed, once a devicedrifts away from controllable states, further communicationbecomes useless and wasteful. xURLLC should thereforeplay a pivotal role in, for instance, avoiding collisions ofautonomous vehicles and guaranteeing to reach a targetdestination.

4.1 Challenges and OpportunitiesReaping the benefits of CoCoCo requires confronting severalchallenges, while opening novel research opportunities.

R7. Controller Connectivity. A control system comprisessensors measuring states, controllers calculating commandsbased on the states, and actuators executing control com-mands. These three intertwined components are not alwaysphysically co-located, but connected over wireless links,resulting in missing and/or distorted state and commandreceptions. To alleviate this problem, by accounting for thesequential control operations, the controller’s transmissionpower can be ramped up if the preceding sensor’s trans-mission delay is too long. By utilizing previous states andcommands, future states and commands can also be inferredvia predictive URLLC (see R3). If future channel conditionsare predicted to be poor, relocating the controller’s func-tionality to its actuator allows to switch remote control toautonomous control.

8. Stable Control. When only communication reliability isconsidered, its associated control stability may be underesti-mated (e.g., useless communication attempts after collision)

Page 6: Extreme URLLC: Vision, Challenges, and Key Enablers · 1 Extreme URLLC: Vision, Challenges, and Key Enablers Jihong Park, Sumudu Samarakoon, Hamid Shiri, Mohamed K. Abdel-Aziz, yTakayuki

6

destination

BS (controller)

windDL: stateUL: model(model UL)

DL: stateUL: action(action UL)

switch UL

(a) Remote UAV Control (1 UAV) (b) Autonomous UAV Control (25 UAVs)

population

MF action

actionMF

0 5 10 15 20 25 30 35 40UL Transmission Power (dBm)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Lyap

unov

Sta

ble P

roba

bility

switch ULmodel ULaction UL

0 50 100 150 200 250 300 350 400Time (s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Swar

m S

tabl

e Pr

obab

ility

action+MF, Tx P=10-3 (mW)action, Tx P=10action, Tx P=10-1

action, Tx P=10-30 5 10 15 20 25 30 35 40

UL Transmission Power (dBm)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Lyap

unov

Sta

ble P

roba

bility

switch ULmodel ULaction UL

switching

Fig. 6. NN-based single UAV control with its Lyapunov stability (destination arrival guarantee, left) and massive autonomous UAV control with theirswarm stability (bounded maximum relative velocity guarantee, right).

or overestimated (e.g., guaranteeing 9-nine communicationreliability for achieving only 90% stability). To correct thisproblem, control stability should first be clearly formalized.For a single agent control, when the output state is propor-tional to the input control, i.e., linear system, system stabilityis determined by ensuring bounded output for any boundedinput, i.e., bounded-input, bounded-output (BIBO) stability. Innon-linear systems, stability can be examined through thelens of Lyapunov stability that is ensured when the temporalderivative of the Lyapunov function decreases. For multiple-agent control, inter-agent collision avoidance can be de-scribed using swarm stability that is satisfied when all agents’relative velocities converge to zero. For a chain of agents(e.g., vehicle platooning), alleviating chain fluctuations canbe measured via string stability that holds if any inter-agentspacing is bounded for a finite disturbance. Reconcilingcontrol stability constraints with communication reliabilityrequirements under R7 is a major challenge.

R9. Scalable Control. In high-precision control applica-tions, both control input and output dimensions are large in-curring huge computing overhead. Moreover, in reality statedynamics are often unknown due to non-stationarity andexternal uncertainties, making traditional model-based con-trol unfit for URLLC applications. ML based control resolvesboth problems, in which an ML model outputs an optimalcontrol by directly feeding a state input. Another challengecomes from multiple interacting agents whose states areintertwined. Control decisions should thus be preceded byexchanging states, which may hinder scalability. Mean-field

(MF) game framework elegantly detours this issue, in whicheach agent interacts only with the population’s distributionthat can be locally estimated. Lastly, human interventionmay interrupt machine operations due to their differentperceptual characteristics (see R3), limiting scalability. Inthis respect, transferring human knowledge to machines viademonstrations or human-machine FL is an emerging researchdirection.

4.2 Use Cases

4.2.1 ML-Aided Single UAV Remote ControlRemote UAV control is an important use case highlightingthe importance of CoCoCo. In order to control a remote UAVunder random wind perturbations, the controller shoulddownload its state and upload the control decision to theUAV within a short time deadline. To meet this end-to-end control latency requirement, the effectiveness of uplinktransmission power control and opportunistic controllerrelocation is studied as follows.

Scenario. A single UAV is controlled by a ground BS so asto reach a target destination. For each control cycle, the BSdownloads (DLs) the UAV state s(t) (velocity and remainingdistance) at time t, and runs an NN (see R9) to compute itsoptimal action (acceleration) that is then uploaded to theUAV, until a time deadline, i.e., MAD. To meet the MAD,if the DL latency is high, the upload (UL) transmissionpower is ramped up. To cope with persistent remote controlfailures, when leaving a certain range, the UL information

Page 7: Extreme URLLC: Vision, Challenges, and Key Enablers · 1 Extreme URLLC: Vision, Challenges, and Key Enablers Jihong Park, Sumudu Samarakoon, Hamid Shiri, Mohamed K. Abdel-Aziz, yTakayuki

7

is switched to the latest NN model from its output controlactions, enabling autonomous UAV control (see R7). Finally,in order not to pass by the destination, the NN loss functionis penalized when the Lyapunov stability s(t)ds(t)/dt < 0is violated (see R8).

Results. Action UL payload sizes are smaller than modelsizes. Hence, always uploading actions (action UL) has fastercontrol cycles with more state observations, yielding itsbetter trained NN model compared to always uploadingNN models (model UL). However, even with maximum ULtransmission power, action UL looses control of a farawayUAV that can be autonomously controlled under model UL.This trade-off is observed in Fig. 6(a). In comparison to thesetwo baselines, by switching from action UL to model UL,the proposed control method (switch UL) ensures Lyapunovstability more frequently during the entire travel, whileachieving shorter travel time.

4.2.2 ML Aided Massive Autonomous UAV ControlUAV swarms are critical in search and rescue missions,whereby forming a flock of UAVs can avoid inter-UAVcollision, at the expense of exchanging instantaneous UAVstates, hampering real-time control. MF game theoreticcontrol alleviates the swarming communication overhead,enabling real-time control while avoiding collision. This isdone by recasting the inter-UAV interactions as the interplaybetween a UAV and the population state distribution [8], asexemplified next.

Scenario. There are 25 UAVs dispatched to a destination.Each UAV is autonomously controlled by locally running apair of two NNs (see R9), computing optimal control actions(action NN) and population state distributions (MF NN),respectively. To avoid collision, the action NN’s loss func-tion is penalized, when the maximum relative velocityis larger than a threshold, i.e., violating swarm stability|vmax − vmin| > ε (see R8).

Results. The convergence of the proposed control method(action+MF) is guaranteed, as long as the initial UAV statesare exchanged. Therefore, even with small transmissionpower (see R7), action+MF incurs no collision by achievingswarming faster than a benchmark scheme (action) runningonly action NN after exchanging instantaneous states, asobserved by Fig. 6(b) .

5 CONCLUSIONS

This article outlined a detailed vision for the next genera-tion of URLLC, coined xURLLC. Breaking away from thereactive, RF based, and communication centric 5G URLLC,xURLLC is predictive, non-RF aided, and weaves in com-munication and control. This vision overcomes several keylimitations of URLLC, namely extreme/rate event predic-tion, scalability, while building in new diversity enhance-ments with minimal overhead, and relaxing latency andreliability requirements based on the value of information.The intent of the xURLLC vision is to spearhead beyond-5G/6G mission-critical applications (e.g., vision-based con-trol, visuo-haptic VR, autonomous/remote-controlled droneswarms, and other cyber-physical control applications). Go-ing forward, xURLLC can no longer be designed in a

vacuum, but instead must leverage and build upon otherdomains and knowledge such as ML, non-RF, and control,while factoring in the cost of these domains, notably withthe era of data-driven decision-making and predictions.

REFERENCES

[1] M. Bennis, M. Debbah, and V. Poor, “Ultra-reliable and low-latency wireless communication: Tail, risk and scale,” Proc. IEEE,vol. 106, no. 10, pp. 1834–1853, Oct. 2018.

[2] V. N. Swamy et al., “Monitoring under-modeled rare events forURLLC,” in Proc. IEEE SPAWC, Cannes, France, 2019.

[3] A. Mahmood et al., “Time synchronization in 5G wireless edge:Requirements and solutions for critical-MTC,” IEEE Commun.Mag., vol. 57, no. 12, pp. 45–51, Dec. 2019.

[4] 3GPP TR 38.824, “Study on physical layer enhancements for NRultra-reliable and low latency case (URLLC),” Tech. Rep. 38.824Rel-16, Mar. 2019.

[5] G. Berardinelli, N. H. Mahmood, I. Rodriguez, and P. Mogensen,“Beyond 5G wireless IRT for industry 4.0: Design principles andspectrum aspects,” in Proc. IEEE GLOBECOM Wkshps, Abu Dhabi,UAE, 2018.

[6] 6Genesis, “Key drivers and research challenges for 6G ubiquitouswireless intelligence,” University of Oulu, vol. 1, Sep. 2019, Whitepaper.

[7] W. Saad, M. Bennis, and M. Chen, “A vision of 6G wirelesssystems: Applications, trends, technologies, and open researchproblems,” to appear in IEEE Netw. [online, accessed: 27/01/2020].Early access: https://ieeexplore.ieee.org/document/8869705.

[8] J. Park, S. Samarakoon, M. Bennis, and M. Debbah, “Wirelessnetwork intelligence at the edge,” Proc. IEEE, vol. 107, no. 11, pp.2204–2239, Nov. 2019.

[9] M. Angjelichinoski, K. F. Trillingsgaard, and P. Popovski, “Astatistical learning approach to ultra-reliable low latency commu-nication,” IEEE Trans. Commun., vol. 67, no. 7, pp. 5153–5166, Jul.2019.

[10] Y. Koda et al., “One pixel image and RF signal based split learningfor mmWave received power prediction,” in Proc. ACM CoNEXT,Orlando, FL, USA, Dec. 2019.

[11] M. K. Abdel-Aziz, S. Samarakoon, M. Bennis, and W. Saad,“Ultra-reliable and low-latency vehicular communication:An active learning approach,” to appear in IEEE Com-mun. Lett. [online, accessed: 27/01/2020]. Early access:https://ieeexplore.ieee.org/document/8918241.

[12] J. Park and M. Bennis, “URLLC-eMBB slicing to support VRmultimodal perceptions over wireless cellular systems,” in Proc.IEEE GLOBECOM, Abu Dhabi, UAE, Dec. 2018.

[13] A. Alahi, A. Haque, and L. Fei-Fei, “RGB-W: When vision meetswireless,” in Proc. IEEE ICCV, Santiago, Chile, Dec. 2015.

[14] M. Eisen et al., “Control aware radio resource allocation in lowlatency wireless control systems,” IEEE Internet Things J., vol. 6,no. 5, pp. 7878–7890, 2019.

[15] H. Shiri, J. Park, and M. Bennis, “Massive autonomous UAVpath planning: A neural network based mean-field game theoreticapproach,” in Proc. IEEE GLOBECOM, Waikoloa, HI, USA, Dec.2019.


Recommended