+ All Categories
Home > Documents > Lecture 34 Spt Dec

Lecture 34 Spt Dec

Date post: 14-Apr-2018
Category:
Upload: kiran-kumar
View: 220 times
Download: 0 times
Share this document with a friend

of 45

Transcript
  • 7/27/2019 Lecture 34 Spt Dec

    1/45

    Solar Photovoltaic

    Technologies

    Prof. C.S. SolankiEnergy Systems Engineering

    IIT Bombay

    Lecture-34

  • 7/27/2019 Lecture 34 Spt Dec

    2/45

    8/1/2008 IIT Bombay, C.S. Solanki Solar Photovoltaic Technologies 2

    Contents

    Brief summary of the previous lecture

    Various Thin film solar cell technologies

    Low temperature deposition

    High temperature deposition

    Solar cell structures

  • 7/27/2019 Lecture 34 Spt Dec

    3/45

    8/1/2008 IIT Bombay, C.S. Solanki Solar Photovoltaic Technologies 3

    Classification of different approaches

    A large number of different technologies are under parallel

    development

    A classification can be made based on different criteria:

    According to Tmax during layer formation

    According to grain size

    According to cell structure

    The R&D on the high-temperature routes is mainly driven

    by considerations from classical bulk Si cells

    Proven high efficiency and stability

    The R&D on the low-temperature routes is mainly driven

    by considerations from a-Si:H solar cells

    low thermal budget processing

  • 7/27/2019 Lecture 34 Spt Dec

    4/45

    8/1/2008 IIT Bombay, C.S. Solanki Solar Photovoltaic Technologies 4

    Crystalline Si films: depositiontemperature

    200 400 600 800 1000 1200 1400

    KanekaPECVD

    SanyoSPC

    CanonVHF-

    PECVD

    ECNLPE

    IMEC,CNRS-PHASE

    CVD

    ISE,MITSUBISHIZMR + CVD

    Neuchtel,JlichVHF-

    PECVD

    (oC)

    Low temperature deposition :

    micro-crystalline Si ( g

  • 7/27/2019 Lecture 34 Spt Dec

    5/45

    8/1/2008 IIT Bombay, C.S. Solanki Solar Photovoltaic Technologies 5

    Crystalline Si materials

    Type of Silicon Abbreviation Crystal SizeRange DepositionMethod

    Single-crystalsilicon

    sc-Si >10cm Czochralski,float zone

    Multicrystallinesilicon mc-Si 1mm-10cm Cast, sheet,ribbon

    Polycrystallinesilicon

    pc-Si 0.1mm-1mm Chemical-vapor deposition

    Microcrystallinesilicon

    mc-Si

  • 7/27/2019 Lecture 34 Spt Dec

    6/45

    8/1/2008 IIT Bombay, C.S. Solanki Solar Photovoltaic Technologies 6

    Basic components of crystalline Si solarcells

    Substrate

    Active layer, 5 to50 m

    EmitterARC

    Diffusionbarrier

    Base contact, if substrate isconductive

    Substrate can be non-conductive, in that case both

    the contact is taken from the front side

  • 7/27/2019 Lecture 34 Spt Dec

    7/458/1/2008 IIT Bombay, C.S. Solanki Solar Photovoltaic Technologies 7

    Solar cell structures

    p-type

    n-type

    1. Homo-junction solar cell

    for instance Mono-crystalline andmulti-cystalline Si solar cells

    p-type

    n-type

    2. Hetero-junction solar cellp-type and n-type are different material

    more material choices some materialcan either be p-type or n-type

    used for material (thin-films) thatabsorbs light better than Si

    low series resistance window layercan be heavily doped

    CdTe and CIS are the examples

    in CdTe cell, CdS is used as windowlayer

  • 7/27/2019 Lecture 34 Spt Dec

    8/458/1/2008 IIT Bombay, C.S. Solanki Solar Photovoltaic Technologies 8

    Solar cell structures

    i-layer

    n-type

    p-type

    3. p-i-n / n-i-p solar cell

    Based on drift rather than diffusion

    Absorption take place in thicker intrinsiclayer

    p-type a-Si / int a-Si / n-type a-Si

    4. Multijunction solar cell

    Also called Tandem cells

    Can acieve high efficiency by capturing

    larger part of the spectrum individual cells with different bandgapsare stacked on top of one another

    Mechanically stacked and Monolithic

    Eg1 > Eg2 > Eg3

    Eg1

    Eg2

    Eg3

  • 7/27/2019 Lecture 34 Spt Dec

    9/458/1/2008 IIT Bombay, C.S. Solanki Solar Photovoltaic Technologies 9

    Diffusion vs drift in thin films

    i

    bidrift

    L

    VEL

    q

    kTDLdiff

    High quality Crystalline-Si uses p-n junction

    Carrier are transported by diffusion to the junction largediffusion length

    junction is very thin

    diffdrift LL *10

    Low-quality material should use p-i-n structure

    Diffusion length are small

    Drift length is about 10 times greater than diffusion length

    intrinsic layer is thicker

  • 7/27/2019 Lecture 34 Spt Dec

    10/458/1/2008 IIT Bombay, C.S. Solanki Solar Photovoltaic Technologies 10

    Light trapping

    "light trapping" in which the optical path length is several times the

    actual device thickness Light trapping is usually achieved by changing the angle at which lighttravels in the solar cell texturing reduces reflection and increases optical path length

    Following schemes are used for light trapping

    2211sinsin nnSnells law

    substrate substrate substrate

  • 7/27/2019 Lecture 34 Spt Dec

    11/458/1/2008 IIT Bombay, C.S. Solanki Solar Photovoltaic Technologies 11

    Deposition techniques

    Physical vapor depositionVacuum evaporationSputtering

    Chemical deposition Chemical vapor deposition

    (CVD)

    Hot wire CVD

    Plasma enhanced CVD Electro-deposition

    Spray pyrolysis

    Liquid phase deposition

    Liquid phase epitaxy

  • 7/27/2019 Lecture 34 Spt Dec

    12/458/1/2008 IIT Bombay, C.S. Solanki Solar Photovoltaic Technologies 12

    Contents

    Motivation Different thin-film solar cell technologies

    Why crystalline Si films?

    Classification based on grain size

    Thin-film solar cell structures

    Deposition techniques

    low temperature

    High temperature approachesMono-crystalline Si thin films

    Other concepts

  • 7/27/2019 Lecture 34 Spt Dec

    13/458/1/2008 IIT Bombay, C.S. Solanki Solar Photovoltaic Technologies 13

    Low-temperature approaches

    Property

    Deposition temperature 200 550oC

    Deposition technologies Plasma-enhanced (PECVD, VHF-PECVD,

    microwave, ECR)Hot-wire CVD

    Solid Phase crystallisation of a-Si:H

    Si-precursor SiH4Dilution with H2 is necessary for PECVD

    microcrystalline Si

    Deposition rate 0.11 nm/s

    1 nm/s (Kaneka), mostly below 0.5 nm/s

    Cell structure Mostly p-i-n

    Dual junction: Micromorph

  • 7/27/2019 Lecture 34 Spt Dec

    14/458/1/2008 IIT Bombay, C.S. Solanki Solar Photovoltaic Technologies 14

    Low-temperature processes

    Technology Main R&D-players Features / results

    PECVDVHF-PECVD

    IPV-Juelich

    Neuchatel

    (VHF-Technologies)

    Kaneka Solartech

    Pacific Solar

    Systems (13.56, 27.12, 40.28 MHz, 4-chamber, 6-chamber system, 30x30 cm2)Micromorph cell: > 13%

    Micromorph cell: 12%

    Module: 9%

    Micromorph cell: 14.5%Micromorph module: 10%

    Module (30x30 cm2): 7%

    !p-n polycrystalline Si solar cell!

    Hot-wire CVD University UtrechtIPV-Juelich

    Micromorph cell on stainless steel: 8%

    Solid Phasecrystallisation

    Sanyo Staring from n+-a-Si:H/a-Si:H-layerWith p+-a-Si:H HIT-emitter: 9.2%

  • 7/27/2019 Lecture 34 Spt Dec

    15/458/1/2008 IIT Bombay, C.S. Solanki Solar Photovoltaic Technologies 15

    Low-temperature approaches: Strength/Weakness

    Pros

    Substrate Compatible with glass

    Plastic

    Efficiency Micromorph cell concept compatiblewith 15%

    Upscalability Upscalability up to 1 m2 modulesseems feasible with cost < 1$/Wp

    Cons

    Deposition rate Best efficiencies are obtained withrates below 1 m/h

    Stability Topcell degradation?

  • 7/27/2019 Lecture 34 Spt Dec

    16/458/1/2008 IIT Bombay, C.S. Solanki Solar Photovoltaic Technologies 16

    Low temperature deposition:c-Si films

    Features

    Grain size ~ 100nm

    Temperature < 600 C

    Small Minority carrier diffusion length< I micron

    P-I-N structure,

    ~ 10 %

    Deposition techniques Solid phase crystallization

    Plasma enhanced CVD

    Hot wire CVD

    Sputtering +

    Metal induced crystallization

    Substrates glass

    SnO2/ZnO coated glass

    metal : stainless steel

    Back contact

    c-Si i layer

    front contactTCO

    Glass/metal

    n layer

    p layer

  • 7/27/2019 Lecture 34 Spt Dec

    17/458/1/2008 IIT Bombay, C.S. Solanki Solar Photovoltaic Technologies 17

    High-temperature approaches

    Property

    Deposition temperature 900 1300oC

    Deposition technologies CVD

    Solution Growth

    ElectrodepositionChemical Vapor Transport (CVT)

    IMEC, PHASE

    ECN, Stuttgart

    NRELNREL

    Si-precursor SiH4, SiH2Cl2, SiHCl3

    Deposition rate 1 10 m/min

    Cell structure Always p-n Epitaxial cells

    Interdigitated cells onnon-conductivesubstrate

  • 7/27/2019 Lecture 34 Spt Dec

    18/458/1/2008 IIT Bombay, C.S. Solanki Solar Photovoltaic Technologies 18

    Technology Main R&D-players Features / results

    CVD

    RTCVD

    Continuous CVD

    IMEC, ISE,Stuttgart

    PHASE

    ISE

    Monocrystalline epitaxial cells: 17.8%Multicrystalline epitaxial cells: 14%Polycrystalline Si solar cells: 6%

    Chemical Vapor

    Transport

    NREL Based on iodine as transporting agent

    Efficiency < 2%Solution Growth /Liquid PhaseEpitaxy

    MPI-StuttgartECNUNSWANU

    Monocrystalline epitaxial cells: 17.4%Multicrystalline epitaxial cells: 15%

    Electrodeposition NREL Made from molten salts of Si

    High-temperature approaches

  • 7/27/2019 Lecture 34 Spt Dec

    19/45

  • 7/27/2019 Lecture 34 Spt Dec

    20/458/1/2008 IIT Bombay, C.S. Solanki Solar Photovoltaic Technologies 20

    Pros

    Efficiency High efficiency proven10.5% on Si:SiC, 8-9% on mullite, SiN,

    Homogeneity/reproducibility

    Because of the extreme conditions, small deviations duringrecrystallisation (thickness of ceramic, change in thermalproperties) can lead to unstable solidification and increaseddefect densities

    Cons

    Substrate Only very high-temperature resistant substrates: Si, SiN, mullite,Al2O3 Very strong requirements on TEC-match and purity Thick blocking layers

    Process Rather complex process ( 4 additional steps to realise activelayer on ceramic)

    Upscalability Quality of Si-layers, subjected to ZMR, decreases at

    recrystallisation speeds above 10 cm/min

    Zone Melting Recrystallisation

    Hi h t t d iti

  • 7/27/2019 Lecture 34 Spt Dec

    21/458/1/2008 IIT Bombay, C.S. Solanki Solar Photovoltaic Technologies 21

    High temperature deposition:Poly-Si films

    Features

    Grain size up to ~ several microns

    Temperature > 600 C

    diffusion length ~ 10s of microns

    P-N structure,

    ~ 11 %

    Deposition techniques:

    Thermal CVD

    Ion assisted deposition

    Liquid phase epitaxy

    (Zone melting recrystallization)

    Substrate requirements

    Cost-effective

    Heat resistant

    Chemically inert

    Thermal expansion co-efficientmatching

    Substrates: Alumina, mullite,graphite, low-cost Si

    Diffusion barrier: SiC, oxide/nitride

    Back contact

    Front contactARC

    Epi-Si filmp+

    p

    n+

    Ceramic substrate

    Diffusion barrier

    CVD si layer

    Conducting substrate

  • 7/27/2019 Lecture 34 Spt Dec

    22/458/1/2008 IIT Bombay, C.S. Solanki Solar Photovoltaic Technologies 22

    Monocrystalline Si thin films Best possible thin-film solar cell performance

    Thin mc-Si films are obtained using Layer transfer processes

    Starting substrate is a Siwafer

    surface conditioning forforming separation layer

    thin-film transferto aforeign substrate

    recycling of starting Sisubstrate

    Device fabrication

    How to form a separation layer?Example-2Intermediate Oxide layer

    Example-1

    Hydrogen implantation

    Si

    Si

    Example-3

    Porous Silicon layer

    Si

    Si

    P Sili L T f

  • 7/27/2019 Lecture 34 Spt Dec

    23/458/1/2008 IIT Bombay, C.S. Solanki Solar Photovoltaic Technologies 23

    Porous Silicon Layer Transfer(PSLT)

    PSLT processes

    ELTRAN (Canon, Japan)

    SPS (Sony, Japan)

    PSI (ZAE, Germany)

    QMS (IPE, Germany)

    LAST (IMEC, Belgium)

    FMS (IMEC, Belgium)

    High monocrystalline Si layer can be deposited.

    Substrate can be re-used several times.

    Porous silicon serves two purposes

    Pores

    Anodization of Si in HF results in the formation ofporous silicon, columns of Si etched out (p+ Si).

    Layer porosity is a function of anodization parameters.

    What is porous silicon ?

  • 7/27/2019 Lecture 34 Spt Dec

    24/458/1/2008 IIT Bombay, C.S. Solanki Solar Photovoltaic Technologies 24

    Integral Steps of PSLT

    Porous silicon formation

    Silicon

  • 7/27/2019 Lecture 34 Spt Dec

    25/45

    8/1/2008 IIT Bombay, C.S. Solanki Solar Photovoltaic Technologies 25

    SiliconSilicon

    Integral Steps of PSLT

    Porous silicon formation

    Active layer deposition

    - Annealing

    - CVD epitaxial layer

  • 7/27/2019 Lecture 34 Spt Dec

    26/45

    8/1/2008 IIT Bombay, C.S. Solanki Solar Photovoltaic Technologies 26

    Integral Steps of PSLT

    Porous silicon formation

    Active layer deposition

    Device fabrication

    Silicon

  • 7/27/2019 Lecture 34 Spt Dec

    27/45

    8/1/2008 IIT Bombay, C.S. Solanki Solar Photovoltaic Technologies 27

    Integral Steps of PSLT

    Porous silicon formation

    Active layer deposition

    Device fabrication

    Layer separation and transfer to

    foreign substrate

    Silicon

    Substrate

    Film Separation

  • 7/27/2019 Lecture 34 Spt Dec

    28/45

    8/1/2008 IIT Bombay, C.S. Solanki Solar Photovoltaic Technologies 28

    Film Separation:

    One-step anodization

    Porous SiliconFilm

    Silicon Substrate

    Porous Silicon Film

    20 m film

    Features Homogeneous film thickness

    Film thickness from few microns toseveral tens of microns

    Film area is limited byexperimental set up

    Film thickness is functionanodization parameters

    Separation occurs for limited set ofparameters

    US patent # 6649485

  • 7/27/2019 Lecture 34 Spt Dec

    29/45

    8/1/2008 IIT Bombay, C.S. Solanki Solar Photovoltaic Technologies 29

    Silicon ingot

    Electrolyte

    Pt electrode

    Continuous production of films

    HF conc. resumes at the surface after film separation

  • 7/27/2019 Lecture 34 Spt Dec

    30/45

    8/1/2008 IIT Bombay, C.S. Solanki Solar Photovoltaic Technologies 30

    Silicon ingot

    Pt electrode

    Electrolyte

    Continuous production of films

    HF conc. resumes at the surface after film separation

  • 7/27/2019 Lecture 34 Spt Dec

    31/45

    8/1/2008 IIT Bombay, C.S. Solanki Solar Photovoltaic Technologies 31

    Continuous production of films

    Silicon ingot

    Pt electrode

    Electrolyte

    Porous silicon

    films

    HF conc. resumes at the surface after film separation

    Patent pending

  • 7/27/2019 Lecture 34 Spt Dec

    32/45

    8/1/2008 IIT Bombay, C.S. Solanki Solar Photovoltaic Technologies 32

    FMS cell process

    FMS (Freestanding Mono-Si) solar

    cellsPS Film

    Epitaxial layer

    Epi layer after PS

    removal

    Two-side contactedcell structure

    PS Film

    Epi layer

    Emitter

    0

    0.2

    0.4

    0.6

    0.8

    1

    400 600 800 1000 1200Wavelength (nm)

    IQE

    FMS -1

    FMS -2

    Ref-20um

    IQE analysis

    0

    5

    10

    15

    20

    25

    30

    35

    0 0.2 0.4 0.6Voltage (Volts)

    Current(mA/cm

    2)

    Voc: 602.6 Volts

    Isc: 33.12 mA/cm2

    FF: 60.18

    Eff.: 12.01%

    Area: 0.65 cm2

    Film thickness: 20 m

    I-V curve

    Patent pending

    Device is ready

    9.6% FMScell with HITemitter

    Oth

  • 7/27/2019 Lecture 34 Spt Dec

    33/45

    8/1/2008 IIT Bombay, C.S. Solanki Solar Photovoltaic Technologies 33

    Other processes:

    a-Si/c-Si hetero-junction

    This configuration has the following advantages:

    potential for high efficiency;low processing temperatures.

    low thermal budget for processing. Reduction of

    energy pay back time;

    Epi layer, p-type

    Epi layer, p+ type Al backcontact

    int. a-Si:H

    n+, a-SiH

    Front contactITO layer Combination of low

    production cost ofamorphous cell

    technology and high

    efficiency of Mono-

    crystalline Si cell

    technology

    Bandgaps: a-Si1.7 to

    1.8 eV, C-Si 1.12eV

    Oth :

  • 7/27/2019 Lecture 34 Spt Dec

    34/45

    8/1/2008 IIT Bombay, C.S. Solanki Solar Photovoltaic Technologies 34

    Other processes:Aluminum induced crystallization

    for growing polycrystalline silicon (poly-Si) films on inexpensive glass

    Films is formed by aluminum-induced crystallization (AIC) of amorphoussilicon (a-Si)

    Annealing transforms an initial glass/Al/a-Si stack into a glass/poly-Si/Al(Si) below the eutectic temperature of the Al/Si system (Teu=577 C).

    The poly-Si forms a continuous layer which consists of large grains with apreferential (1 0 0) orientation

    Al

    a-Si

    Glass

    Alcrystalline-Si

    Glass

    annealing

  • 7/27/2019 Lecture 34 Spt Dec

    35/45

    8/1/2008 IIT Bombay, C.S. Solanki Solar Photovoltaic Technologies 35

    Conclusions

    Thin-film crystalline Si solar cells represent obvious way

    to reduce costs PV

    A large number of techniques are under investigation

    There is a certain risk for subcritical R&D in this field

    Crucial issues are clear:

    Low-T techniques: increase of growth rate High-T techniques

    Availability of ceramic substrate

    Increase of recrystallisation speed for process

    Improvement of nucleation control for process

    without ZMR

    On all of these questions there is a considerable R&D-activity

  • 7/27/2019 Lecture 34 Spt Dec

    36/45

    8/1/2008 IIT Bombay, C.S. Solanki Solar Photovoltaic Technologies 36

    Concentrator PV

    systems

  • 7/27/2019 Lecture 34 Spt Dec

    37/45

  • 7/27/2019 Lecture 34 Spt Dec

    38/45

    8/1/2008 IIT Bombay, C.S. Solanki Solar Photovoltaic Technologies 38

    Components of CPV systems

    Solar cell

    Heat sink

    1 - Light collector

    2 Solar Cell

    3 Heat Sink

    4 Sun tracker

  • 7/27/2019 Lecture 34 Spt Dec

    39/45

    8/1/2008 IIT Bombay, C.S. Solanki Solar Photovoltaic Technologies 39

    Light collectors

    Refraction andreflection

    Concentrationratio

    Line focus &

    point focus

    Imaging & non-imaging

    concentrator

  • 7/27/2019 Lecture 34 Spt Dec

    40/45

  • 7/27/2019 Lecture 34 Spt Dec

    41/45

    8/1/2008 IIT Bombay, C.S. Solanki Solar Photovoltaic Technologies 41

    Multi-junction solar cells Bandgap engineering

    Materials are manipulated to adjust the bandgap accordingto solar spectrum

    Double and triple-junction solar cells

    InGaP/GaAs/Ge on Ge substrate

    0.5 1 1.5 2 2.5

    Wavelength (m)

    0.5

    1.0

    1.5

    Sunlightintensity

    (kW

    /m2/m)

    Eg1 > Eg2 > Eg3

    Eg1

    Eg2

    Eg3

  • 7/27/2019 Lecture 34 Spt Dec

    42/45

    8/1/2008 IIT Bombay, C.S. Solanki Solar Photovoltaic Technologies 42

    Multi-junction solar cells

    - 37.3 % (concentration@175 Suns, 2004) Worldrecord efficiency bySpectrolab

    - 13% with 6 junction

    Bandgap GaInP2 - 1.89eV

    GaAs 1.42 eV

    Ge 0.67 eV

    Design challenge is to match current fromeach cell

    Higher number of junction can achieve higherefficacies 40% is target by 2006

    Potentially 45% by 2010 (Spectrolab)

  • 7/27/2019 Lecture 34 Spt Dec

    43/45

    8/1/2008 IIT Bombay, C.S. Solanki Solar Photovoltaic Technologies 43

    Comparison of technologies

    Material t/ Disadvantages Advantages, perspectives

    Mono-Si

    300

    m,15 -18 %

    Lengthy productionprocedure, wafersawing necessary

    Best researched solar cellmaterial in a next few years it

    will dominate world market,especially there, wherehigh power/area ratio isrequired

    Multi-c Si

    300

    m,13 -

    15 %

    lengthierproductionprocedure, wafer

    sawing necessary

    The most importantproduction procedure at

    least for the next ten years

    Polyc-Si

    Transpare

    nt

    300m,10 %

    Lower efficiency,special proceduresto achieve opticaltransparency

    required

    Attractive solar cells for differentBIPV applications. Possiblealso production of double sided

    cells

  • 7/27/2019 Lecture 34 Spt Dec

    44/45

    8/1/2008 IIT Bombay, C.S. Solanki Solar Photovoltaic Technologies 44

    Comparison of technologies

    Material t / Disadvantages

    Advantages, perspectives

    EFG

    250m,

    14 %

    Limited use

    of this

    productionprocedure

    Very fast crystal growth, nowafer sawing necessary,

    significant decrease in productioncosts possible in the future

    Riboon-Si

    300m,

    12 %

    Limited use ofthis productionprocedure

    No wafer sawing necessary,significant decrease in productioncosts possible in the future

    a-Si

    1 m,5 - 8%

    Lower

    efficiency,shorter lifespan.

    No sawing necessary, possibleproduction in the flexible form. Itis a promising material in thefuture if long-term stability

    increases

  • 7/27/2019 Lecture 34 Spt Dec

    45/45

    Comparison of technologies

    Material t / Disadvantages Advantages, perspectives

    CdTe

    2-3 m ,6 - 9 %

    (mod.)

    Poisonousraw

    materials

    Significant decrease inproduction costs possible in

    the future

    CIS

    2-3 m,7,5 -9,5 %(mod.)

    LimitedIndiumsupply innature

    Significant decrease inproduction costs possible inthe future

    HIT200 m,18 %

    Limited useof thisproductionprocedure

    Higher efficiency, bettertemperature coefficient andlower thickness.


Recommended