+ All Categories
Home > Documents > Nuclear Reactor Theory, JU, First Semester, 2010-2011 (Saed Dababneh). 1 1/ v 235 U thermal cross...

Nuclear Reactor Theory, JU, First Semester, 2010-2011 (Saed Dababneh). 1 1/ v 235 U thermal cross...

Date post: 26-Mar-2015
Category:
Upload: aidan-maynard
View: 214 times
Download: 1 times
Share this document with a friend
Popular Tags:
16
Nuclear Reactor Theory, JU, First Semester, 2010-2011 (Saed Dababneh). 1 1/v 235 U thermal cross sections fission 584 b. scattering 9 b. radiative capture 97 b. Fast neutrons should be moderated. Fission Barriers Neutron Cross Section (Different Features)
Transcript
Page 1: Nuclear Reactor Theory, JU, First Semester, 2010-2011 (Saed Dababneh). 1 1/ v 235 U thermal cross sections fission 584 b. scattering 9 b. radiative capture.

Nuclear Reactor Theory, JU, First Semester, 2010-2011 (Saed Dababneh).

1

1/v

235U thermal cross sectionsfission 584 b.scattering 9 b.radiative capture 97 b.

Fast neutrons should be moderated.

Fission Barriers

Neutron Cross Section (Different Features)

Page 2: Nuclear Reactor Theory, JU, First Semester, 2010-2011 (Saed Dababneh). 1 1/ v 235 U thermal cross sections fission 584 b. scattering 9 b. radiative capture.

Nuclear Reactor Theory, JU, First Semester, 2010-2011 (Saed Dababneh).

2

Neutron Induced Reactions

22 nXHCCHbY IIIn X(n,b)Y

n(En)b(Q+En)

For thermal neutronsQ >> En

b(Q) constant

2

11

vE

)( nln EPvn

Probability to penetrate the potential barrier

Po(Ethermal) = 1P>o(Ethermal) = 0

vEnn

1)( Non-resonant

Page 3: Nuclear Reactor Theory, JU, First Semester, 2010-2011 (Saed Dababneh). 1 1/ v 235 U thermal cross sections fission 584 b. scattering 9 b. radiative capture.

Nuclear Reactor Theory, JU, First Semester, 2010-2011 (Saed Dababneh).

3

Neutron Induced Reactions

Page 4: Nuclear Reactor Theory, JU, First Semester, 2010-2011 (Saed Dababneh). 1 1/ v 235 U thermal cross sections fission 584 b. scattering 9 b. radiative capture.

Nuclear Reactor Theory, JU, First Semester, 2010-2011 (Saed Dababneh).

4

bbplL

lb 222

1max, )12( lbb lll

)()(

7.656)(2

keVEub

CM HW 3HW 3

)1()12)(12(

122max aX

XaaX JJ

J

Statistical Factor (Introduction)

Generalization

Page 5: Nuclear Reactor Theory, JU, First Semester, 2010-2011 (Saed Dababneh). 1 1/ v 235 U thermal cross sections fission 584 b. scattering 9 b. radiative capture.

Nuclear Reactor Theory, JU, First Semester, 2010-2011 (Saed Dababneh).

5

Entrance Channela + X

ExitChannelb + YCompound

Nucleus C*

ExcitedState

ExJ

a + X Y + b Q > 0b + Y X + a Q < 0

Inverse Reaction

22 )1()12)(12(

12XaHCCHbY

JJ

JIIIaX

XaaXaX

QM StatisticalFactor ()

Identicalparticles

• Nature of force(s).• Time-reversal invariance.

22 )1()12)(12(

12YbHCCHXa

JJ

JIIIbY

YbbYbY

??bY

aX

HW 4HW 4

More Generalization

Reaction Cross Section

Page 6: Nuclear Reactor Theory, JU, First Semester, 2010-2011 (Saed Dababneh). 1 1/ v 235 U thermal cross sections fission 584 b. scattering 9 b. radiative capture.

Nuclear Reactor Theory, JU, First Semester, 2010-2011 (Saed Dababneh).

6

Projectile

TargetQ-value

Projectile

Q-valueTarget

Direct Capture(all energies)

Resonant Capture(selected energies with large X-section)

E = E + Q - Eex

2XaHY

Q + ER = Er

22XaHEEHE CNrrf

Resonance Reactions

Page 7: Nuclear Reactor Theory, JU, First Semester, 2010-2011 (Saed Dababneh). 1 1/ v 235 U thermal cross sections fission 584 b. scattering 9 b. radiative capture.

Nuclear Reactor Theory, JU, First Semester, 2010-2011 (Saed Dababneh).

7

Page 8: Nuclear Reactor Theory, JU, First Semester, 2010-2011 (Saed Dababneh). 1 1/ v 235 U thermal cross sections fission 584 b. scattering 9 b. radiative capture.

Nuclear Reactor Theory, JU, First Semester, 2010-2011 (Saed Dababneh).

8

Resonance Reactions

22

2 )()(

o

fresponse

Damped OscillatorDamped Oscillator

eigenfrequency

Dampingfactor

Oscillator strength

22

2 )()()(

R

ba

EEE

0

1

t

ot

Page 9: Nuclear Reactor Theory, JU, First Semester, 2010-2011 (Saed Dababneh). 1 1/ v 235 U thermal cross sections fission 584 b. scattering 9 b. radiative capture.

Nuclear Reactor Theory, JU, First Semester, 2010-2011 (Saed Dababneh).

9

Resonance Reactions

22

2

2

)()()1(

)12)(12(

12)(

R

baaX

XaaX EEJJ

JE

Breit-Wigner formulaBreit-Wigner formula

• All quantities in CM system• Only for isolated resonances.

a

b

e

R

aae

baR

Reaction

Elastic scattering

HW 5HW 5 When does R take its maximum value?

ba

Usually a >> b.

Page 10: Nuclear Reactor Theory, JU, First Semester, 2010-2011 (Saed Dababneh). 1 1/ v 235 U thermal cross sections fission 584 b. scattering 9 b. radiative capture.

Nuclear Reactor Theory, JU, First Semester, 2010-2011 (Saed Dababneh).

10

Resonance Reactions

Ja + JX + l = J(-1)l (Ja) (JX) = (J)

(-1)l = (J) Natural parity.

ExitChannelb + Y

Compound Nucleus C*

ExcitedState

ExJ

Entrance Channela + X

Page 11: Nuclear Reactor Theory, JU, First Semester, 2010-2011 (Saed Dababneh). 1 1/ v 235 U thermal cross sections fission 584 b. scattering 9 b. radiative capture.

Nuclear Reactor Theory, JU, First Semester, 2010-2011 (Saed Dababneh).

11

Resonance Reactions

Cro

ss s

ecti

on

EC a Energy

What is the “Resonance Strength” …?What is its significance?In what units is it measured?

ba

aXXa JJ

J)1(

)12)(12(

12

Charged particleradiative capture (a,)(What about neutrons?)(What about neutrons?)

Page 12: Nuclear Reactor Theory, JU, First Semester, 2010-2011 (Saed Dababneh). 1 1/ v 235 U thermal cross sections fission 584 b. scattering 9 b. radiative capture.

Nuclear Reactor Theory, JU, First Semester, 2010-2011 (Saed Dababneh).

12

Neutron Resonance Reactions

Page 13: Nuclear Reactor Theory, JU, First Semester, 2010-2011 (Saed Dababneh). 1 1/ v 235 U thermal cross sections fission 584 b. scattering 9 b. radiative capture.

Nuclear Reactor Theory, JU, First Semester, 2010-2011 (Saed Dababneh).

13

Neutron Activation Analysis

(Z,A) + n (Z, A+1)-

(Z+1, A+1)

(-delayed -ray)

Project 1Project 1

NAA and UNAA and U

Page 14: Nuclear Reactor Theory, JU, First Semester, 2010-2011 (Saed Dababneh). 1 1/ v 235 U thermal cross sections fission 584 b. scattering 9 b. radiative capture.

Nuclear Reactor Theory, JU, First Semester, 2010-2011 (Saed Dababneh).

14

Recall Ft = n v t N = I t Simultaneous beams, different intensities, same energysame energy.

Ft = t (IA + IB + IC + …) = t (nA + nB + nC + …)vIn a reactorreactor, if neutrons are moving in all directionsall directions

n = nA + nB + nC + …

Ft = t nv

neutron flux = nv

Reaction Rate Rt Ft = t = /t (=nvNt)

Neutron Flux and Reaction Rate

Not talking about a beam

anymore.

same energysame energy

Page 15: Nuclear Reactor Theory, JU, First Semester, 2010-2011 (Saed Dababneh). 1 1/ v 235 U thermal cross sections fission 584 b. scattering 9 b. radiative capture.

Nuclear Reactor Theory, JU, First Semester, 2010-2011 (Saed Dababneh).

15

Different energiesDifferent energiesDensity of neutrons with energy between E and E+dEn(E)dEReaction rate for those “monoenergetic” neutronsdRt = t(E) n(E)dE v(E)

0

)( dEEnn

00

)()()( dEEEndEE

00

)()()()()( dEEEdEEEnER ttt

0

)()( dEEER ii

Neutron Flux and Reaction Rate

Units!

Page 16: Nuclear Reactor Theory, JU, First Semester, 2010-2011 (Saed Dababneh). 1 1/ v 235 U thermal cross sections fission 584 b. scattering 9 b. radiative capture.

Nuclear Reactor Theory, JU, First Semester, 2010-2011 (Saed Dababneh).

16

Neutron Flux and Reaction Rate

In general, neutron flux depends on:• Neutron energy, E.• Neutron spatial position, r. • Neutron angular direction, • Time, t.

Various kinds of neutron fluxes (depending on the degree of detail needed).

Time-dependent and time-independent angular neutron flux.

),,( Er),,,( tEr


Recommended