+ All Categories
Home > Documents > Potential of Hydro Power and Storage for the Integration ...

Potential of Hydro Power and Storage for the Integration ...

Date post: 18-Nov-2021
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
32
Carnegie Mellon Potential of Hydro Power and Storage for the Integration of Wind Generation CMU Electricity Conference March 9th, 2011 Gabriela Hug Gabriela Hug Assistant Professor [email protected] 1
Transcript

Carnegie Mellon

Potential of Hydro Power and Storage for the Integration of Wind Generation

CMU Electricity Conference

March 9th, 2011

Gabriela HugGabriela HugAssistant [email protected]

1

Carnegie Mellon

O tliOutline• Introduction• Control Concept & Modeling• Case 1: Wind and Run-of River Power Plants• Case 2: Generation/Storage DispatchCase 2: Generation/Storage Dispatch• Conclusions

2

Carnegie Mellon

I t d tiIntroduction• Goal

– up to 20% wind penetration by 2030

• Challenges:Challenges:– Intermittency and variability– Missing infrastructure

• Balancing Potential:– Storage

Demand response– Demand response– Conventional generation– Curtailment

3

Carnegie Mellon

H d PHydro Power• Types of Hydro Power

Run-of River Power Plant Storage Power Plant Pumped Hydro Power Plant

4

Carnegie Mellon

O tliOutline• Introduction• Control Concept & Modeling• Case 1: Wind and Run-of River Power Plants• Case 2: Generation/Storage DispatchCase 2: Generation/Storage Dispatch• Conclusions

5

Carnegie Mellon

C t l C tControl Concept• Predictive Control

Use model of plant to be controlled to predict influence of input– Use model of plant to be controlled to predict influence of input

– Choose input sequence which gives best performance over horizonApply first step and measure– Apply first step and measure new state

6

Carnegie Mellon

M d li StModeling: Storage• Storage

Limits on – Storage size– Charging and

discharging rateNo simultaneous charging and discharging

7

Carnegie Mellon

M d li H d P• Pumped Hydro Power Plant

Modeling: Hydro Power

• Storage Power Plantg

)(kQIS

)(1 kPOS⋅

β

8

Carnegie Mellon

M d li H d P• Run-of River Power Plant

Modeling: Hydro Power

– Retention differentiates a river from a tank

– Goal:• Minimize discharge variations• Minimize deviations of water levels from reference value (and keep within

limits)

9

Carnegie Mellon

M d li H d PModeling: Hydro Power• Saint Venant Equations

=> dependency between water discharge and water level at each individual point in the river=> Linearization and discretization in time and space

• Dependency between discharge and electric power

10

Carnegie Mellon

M d li G ti d L dModeling: Generation and Load• Conventional Generation

– Capacity limit– Ramp rate

• Intermittent Generation– Predictions of output available– Allow curtailmentAllow curtailment

• LoadPredictions of demand available– Predictions of demand available

– Allow demand control

11

Carnegie Mellon

O tliOutline• Introduction• Control Concept & Modeling• Case 1: Wind and Run-of River Power Plants• Case 2: Generation/Storage DispatchCase 2: Generation/Storage Dispatch• Conclusions

12

Carnegie Mellon

C 1 Wi d d R f Ri Pl t• Objective Function

Case 1: Wind and Run-of River Plants

minimize discharge changes

• ConstraintsRi fl d l

minimize level deviations

smoothen wind power

– River flow model– Constraints on water level and turbine/weir discharges

13

Carnegie Mellon

C 1 T t S tCase 1: Test System• Cascade of four run of river power plants (20km apart)

• Operating Point: 3000m3/s (1200m3/s through weirs)• Water Level Constraints: ±12cm• Weir discharge and inflow constant• 10% rms prediction error• 2 hours prediction horizon 5 minute resolution2 hours prediction horizon, 5 minute resolution

14

Carnegie Mellon

C 1 Si l ti R ltCase 1: Simulation Results

15

Carnegie Mellon

C 1 Si l ti R ltCase 1: Simulation Results

16

Carnegie Mellon

O tliOutline• Introduction• Control Concept & Modeling• Case 1: Wind and Run-of River Power Plants• Case 2: Generation/Storage DispatchCase 2: Generation/Storage Dispatch• Conclusions

17

Carnegie Mellon

C 2 G ti /St Di t hCase 2: Generation/Storage Dispatch• Economic Objectives

Minimize generation costs– Minimize generation costs– Minimize conversion losses

• Environmental ObjectivesEnvironmental Objectives– Minimize CO2 emissions/cost (natural gas, coal)

– Minimize impact on water flow (hydro)Minimize impact on water flow (hydro)

• Quality of Service– Minimize demand side management– Minimize demand side management

– Minimize wind curtailment

18

Carnegie Mellon

C 2 Si l ti S tCase 2: Simulation Setup• Thermal Power Plants

Capacity Ramp Rate Economic Cost Environmental Cost

Coal 700 MW 25 MW / 0.5h

Natural Gas 500 MW 100 MW / 5min

GG PP Δ+4

PP 20060 2 PP Δ102

cPP GG ++ 502.0 2

R bl

Natural Gas 500 MW 100 MW / 5min

Nuclear 450 MW 3 MW / h

cPP GG ++ 2006.0 2GG PP Δ+102

cPP GG ++ 201.0 2GP

• Renewable

River Flow Weir discharge Economic Cost Environmental Cost

Hydro (4 plants) 3000 m3/s 1200 m3/s cPG +50 22 250 qh δ+Δy ( p ) cPG +5.0 250 qh δ+Δ

Capacity Non-Usage

Wind 1000 MW ( )201.0 Gref

G PP −⋅

19

( )GG

Carnegie Mellon

C 2 Si l ti S tCase 2: Simulation Setup• Storage

Capacity Economic Cost

Storage 400 MWhlossP5

• Load

Maximum Critical Quality of Service

Load 2500 MW 70% ( )2100 Lref

L PP −⋅

20

Carnegie Mellon

Case 2: Simulation ResultsCase 2: Simulation Results

21

Carnegie Mellon

C 2 Si l ti R ltCase 2: Simulation Results

22

Carnegie Mellon

C 2 R fCase 2: Reference

23

Carnegie Mellon

C 2 R fCase 2: Reference

24

Carnegie Mellon

C 2 Si l ti R ltCase 2: Simulation Results

25

Carnegie Mellon

C 2 Si l ti R ltCase 2: Simulation Results

26

Carnegie Mellon

C l iConclusions• Electric power systems field is currently in a major transition

⇒ Major challenges need to be resolved• Predictive control allows for full exploitation of device potentials• Storage reduces need for fast-ramping backup generation and requiredStorage reduces need for fast ramping backup generation and required

ramp rates if optimally controlled• Existing hydro power provides storage capacity• Coordination achieves overall optimal performanceCoordination achieves overall optimal performance• Integration of intermittent renewable generation asks for hybrid solution

27

Carnegie Mellon

28

Carnegie Mellon

C ti l H d PConventional Hydro Power100%

60%

70%

80%

90%

30%

40%

50%

60%

0%

10%

20%

29

Carnegie Mellon

M d li H d PModeling: Hydro Power• Linear Model

– River Flow

– Discharge to Electric Power

30

Carnegie Mellon

C 1 Si l ti R ltCase 1: Simulation Results• Smoothness of Total Power Output

31

Carnegie Mellon

C 2 G ti /St Di t hCase 2: Generation/Storage Dispatch• Objective Function

• ConstraintsR t– Ramp rates

– Capacities– Water level limits

G ti D d– Generation = Demand

32


Recommended