+ All Categories
Home > Documents > Presentation Slides for Chapter 16 of Fundamentals of Atmospheric Modeling 2 nd Edition

Presentation Slides for Chapter 16 of Fundamentals of Atmospheric Modeling 2 nd Edition

Date post: 14-Jan-2016
Category:
Upload: imaran
View: 28 times
Download: 0 times
Share this document with a friend
Description:
Presentation Slides for Chapter 16 of Fundamentals of Atmospheric Modeling 2 nd Edition. Mark Z. Jacobson Department of Civil & Environmental Engineering Stanford University Stanford, CA 94305-4020 [email protected] March 30, 2005. Mass Flux To and From a Single Drop. - PowerPoint PPT Presentation
Popular Tags:
50
Presentation Slides for Chapter 16 of Fundamentals of Atmospheric Modeling 2 nd Edition Mark Z. Jacobson partment of Civil & Environmental Engineerin Stanford University Stanford, CA 94305-4020 [email protected] March 30, 2005
Transcript
Page 1: Presentation Slides for Chapter 16 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Presentation Slides for

Chapter 16of

Fundamentals of Atmospheric Modeling 2nd Edition

Mark Z. JacobsonDepartment of Civil & Environmental Engineering

Stanford UniversityStanford, CA [email protected]

March 30, 2005

Page 2: Presentation Slides for Chapter 16 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Mass Flux To and From a Single DropRate of change of mass (g) of single pure liquid water drop

(16.1)

Integrate from drop surface to infinity (16.2)

Energy change at drop surface due to conduction (16.3)

dmdt

=4πR2DvdρvdR

dmdt

=4πrDv ρv −ρv,r( )

dQr*

dt=−4πR2κa

dTd R

Page 3: Presentation Slides for Chapter 16 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Mass Flux To and From a Single DropIntegrate from drop surface to infinite radius (16.4)

Relate change in mass and energy at surface (16.5)

Combine (16.4) and (16.5) and assume steady state (16.6)

dQr*

dt=4πrκa Tr −T( )

mcWdTrdt

=Ledmdt

−dQr

*

dt

Ledmdt

=4πrκa Tr −T( )

Page 4: Presentation Slides for Chapter 16 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Mass Flux To and From a Single DropCombine equation of state at saturation

with Clausius Clapeyron equation

to obtain (16.7)

pv,s =ρv,sRvT

dpv,sdT

=ρv,sLe

T

dρv,sρv,s

=LeRv

dT

T2 −dTT

Page 5: Presentation Slides for Chapter 16 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Mass Flux To and From a Single DropIntegrate from infinite radius to drop surface (16.8)

Simplify assuming T≈ Tr (16.9)

Substitute (16.6)

lnρv,s Tr( )ρv,s T( )

=LeRv

Tr −T( )TTr

−lnTrT

ρv,s Tr( )−ρv,s T( )

ρv,s T( )=

LeRv

Tr −T( )

T2 −Tr −T

T

ρv,s Tr( )−ρv,s T( )

ρv,s T( )=

Le4πrκaT

LeRvT

−1⎛

⎝ ⎜

⎠ ⎟

dmdt

Ledmdt

=4πrκa Tr −T( )

into (16.9) -->

(16.10)

Page 6: Presentation Slides for Chapter 16 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Mass Flux to and From a Single Drop

Substitute (16.2) into (16.10) (16.11)

Rearrange --> Mass-flux form of growth equation (16.12)

ρv −ρv,s T( )

ρv,s T( )=

Le4πrκaT

LeRvT

−1⎛

⎝ ⎜

⎠ ⎟ +

14πrDvρv,s T( )

⎣ ⎢

⎦ ⎥

dmdt

dmdt

=4πrDv pv −pv,s( )

DvLepv,sκaT

LeRvT

−1⎛

⎝ ⎜

⎠ ⎟ +RvT

ρv,s Tr( )−ρv,s T( )

ρv,s T( )=

Le4πrκaT

LeRvT

−1⎛

⎝ ⎜

⎠ ⎟

dmdt

dmdt

=4πrDv ρv −ρv,r( ) (16.2)

(16.10)

Page 7: Presentation Slides for Chapter 16 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Mass Flux to and From a Single DropMass-flux form of growth equation (16.12)

Rewrite equation for trace gases and particle sizes (16.13)

dmdt

=4πrDv pv −pv,s( )

DvLepv,sκaT

LeRvT

−1⎛

⎝ ⎜

⎠ ⎟ +RvT

dmidt

=4πri ′ D q,i pq − ′ p q,s,i( )

′ D q,i Le,q ′ p q,s,i′ κ a,iT

Le,qmq

R*T−1

⎝ ⎜

⎠ ⎟ +

R*Tmq

Page 8: Presentation Slides for Chapter 16 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Fluxes to and From a Single Drop

Change in mass as a function of change in radius (16.14)

Radius-flux form of growth equation (16.15)

dmidt

=4πri2ρp,i

dridt

ridridt

=′ D q,i pq − ′ p q,s,i( )

′ D q,i Le,qρp,i ′ p q,s,i′ κ a,iT

Le,qmq

R*T−1

⎝ ⎜

⎠ ⎟ +

R*Tρp,i

mq

Page 9: Presentation Slides for Chapter 16 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Fluxes to and From a Single DropChange in mass as a function of change in volume

Volume-flux form of growth equation (16.16)

dmidt

=ρp,idυidt

dυidt

=48π2υi( )

13′ D q,i pq − ′ p q,s,i( )

′ D q,iLe,qρp,i ′ p q,s,i

′ κ a,iT

Le,qmq

R*T−1

⎝ ⎜

⎠ ⎟ +

R*Tρp,i

mq

Page 10: Presentation Slides for Chapter 16 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Gas Diffusion CoefficientMolecular diffusion

Movement of molecules due to their kinetic energy, followed by collision with other molecules and random redirection.

Uncorrected gas diffusion coefficient (cm2 s-1) (16.17)

Dq =5

16Adq2ρa

R*Tma2π

mq +mamq

⎝ ⎜ ⎜

⎠ ⎟ ⎟

Page 11: Presentation Slides for Chapter 16 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Collision Diameters and Diffusion Coefficients of Several Gases

Table 16.1

Collision DiffusionDiameter coefficient

Gas (10-10 m) (cm2 s-1)____________________________________________

Air 3.67 0.147Ar 3.58 0.144CO2 4.53 0.088H2 2.71 0.751NH3 4.32 0.123O2 3.54 0.154H2O 3.11 0.234

Page 12: Presentation Slides for Chapter 16 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Corrected Gas Diffusion Coefficient

(16.18)′ D q,i =Dqωq,iFq,L,i

Page 13: Presentation Slides for Chapter 16 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Corrected Gas Diffusion CoefficientCorrection for collision geometry, sticking probability (16.19)

ωq,i = 1+1.33+0.71Knq,i

−1

1+Knq,i−1 +

4 1−αq,i( )

3αq,i

⎢ ⎢

⎥ ⎥ Knq,i

⎧ ⎨ ⎪

⎩ ⎪

⎫ ⎬ ⎪

⎭ ⎪

−1

Mass accommodation (sticking) coefficient, q,i Fractional number of gas collisions with particles that results in the gas sticking to the surface. From 0.01 - 1.0.

ωq,i →0 as Knq,i → ∞ (smallparticles)

1 as Knq,i → 0 (largeparticles)

⎧ ⎨ ⎩

Knudsen number for condensing vapor (16.20)

Knq,i =λqri

Page 14: Presentation Slides for Chapter 16 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Corrected Gas Diffusion CoefficientMean free path of a gas molecule (16.23)

Ventilation factor (16.24)Corrects for enhanced vapor transfer to a large-particle surface due to eddies sweeping vapor to the surface

λq =ma

πAdq2ρa

mama +mq

=64Dq5πv q

mama +mq

⎝ ⎜ ⎜

⎠ ⎟ ⎟

Fq,L,i =1+0.108xq,i

2 xq,i ≤1.4

0.78+0.308xq,i xq,i >1.4

⎧ ⎨ ⎪

⎩ ⎪

xq,i =Rei12

Scq13

Page 15: Presentation Slides for Chapter 16 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Corrected Gas Diffusion CoefficientParticle Reynolds number

Gas Schmidt number (16.25)

Rei =2riVf,i

νa

Scq =νaDq

Page 16: Presentation Slides for Chapter 16 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Corrected Thermal ConductivityCorrected thermal conductivity of air (16.26)

Correction to conductivity for collision geometry and sticking probability (16.27)

′ κ a,i =κaωh,iFh,L,i

ωh,i = 1+1.33+0.71Knh,i

−1

1+Knh,i−1 +

41−αh( )3αh

⎢ ⎢

⎥ ⎥ Knh,i

⎧ ⎨ ⎪

⎩ ⎪

⎫ ⎬ ⎪

⎭ ⎪

−1

Page 17: Presentation Slides for Chapter 16 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Corrected Thermal ConductivityKnudsen number for energy (16.28)

Thermal mean free path (16.29)

Knh,i =λhri

λh =3Dhv a

Page 18: Presentation Slides for Chapter 16 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Corrected Thermal ConductivityThermal accommodation (sticking) coefficient

Fraction of molecules bouncing off surface of a drop that have acquired temperature of drop ≈ 0.96 for water. (16.30)

Ventilation factor (16.31)Corrects for enhanced energy transfer to drop surface due to eddies

αh =Tm−TTs−T

Fh,L,i =1+0.108xh,i

2 xh,i ≤1.4

0.78+0.308xh,i xh,i >1.4

⎧ ⎨ ⎪

⎩ ⎪

xh,i =Rei12

Pr13

Page 19: Presentation Slides for Chapter 16 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Corrected Saturation Vapor PressureCurvature (Kelvin) effect

Increases saturation vapor pressure over small drops.

Solute effect (Raoult’s Law)The saturation vapor pressure of a solvent containing solute is reduced to that of the pure solvent multiplied by the mole fraction of the solvent in solution.

Radiative cooling effectDecreases saturation vapor pressure over large drops

Page 20: Presentation Slides for Chapter 16 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Curvature and Solute Effects

Fig. 16.1

0.98

0.99

1

1.01

1.02

0.01 0.1 1 10

Saturation ratio

Particle radius ( μ )m

Curvature effect

Solute effectEquilibrium

saturation

ratio

*r

*S

Sat

urat

ion

rati

o

Page 21: Presentation Slides for Chapter 16 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Curvature EffectSaturation vapor pressure over a curved, dilute surface relative to that

over a flat, dilute surface (16.33)

′ p q,s,ipq,s

=exp2σpmp

ri R*Tρp,i

⎝ ⎜ ⎜

⎠ ⎟ ⎟ ≈1+

2σpmp

riR*Tρp,i

Note that exp(x)≈1+x for small x

Page 22: Presentation Slides for Chapter 16 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Curvature EffectSurface tension of water containing dissolved organics (16.34)

Surface tension of water containing dissolved inorganic ions (16.35)

σ p =σw a −0.0187T ln 1+628.14mC( )

σ p =σw a +1.7mI

Page 23: Presentation Slides for Chapter 16 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Solute EffectVapor pressure over flat water surface with solute relative to that

without solute (Raoult's Law) (16.36)

Relatively dilute solution: nw >>ns (16.37)

Number of moles of solute in solution

′ p q,s,ipq,s

=nw

nw +ns

′ p q,s,ipq,s

≈1−nsnw

ns =ivMsms

Page 24: Presentation Slides for Chapter 16 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Solute EffectNumber of moles of liquid water in a drop (16.38)

Combine terms --> solute effect (16.39)

nw =Mwmv

≈4πri

3ρw3mv

′ p q,s,ipq,s

≈1−3mvivMs4πri

3ρwms

Page 25: Presentation Slides for Chapter 16 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Köhler EquationCombine curvature and solute effects --> Sat. ratio at equilibrium

(16.40)

Simplify Köhler equation (16.42)

Set Köhler equation to zero --> (16.43)Critical radius for growth and critical saturation ratio

′ S q,i =′ p q,s,ipq,s

≈1+2σpmp

riR*Tρp,i

−3mvivMs

4πri3ρwms

′ S q,i =1+ari

−b

ri3

a =2σpmp

R*Tρp,ib =

3mvivMs4πρwms

r* =3ba S* =1+

4a3

27b

Page 26: Presentation Slides for Chapter 16 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Table 16.2

Critical radii / supersaturations for water drops containing sodium chloride or ammonium sulfate at 275 K

Köhler Equation

Sodium chloride Ammonium sulfateSolute mass (g) r* (μm) S*-1 (%) r* (μm) S*-1 (%)0 0 ∞ 0 ∞10-18 0.019 4.1 0.016 5.110-16 0.19 0.41 0.16 0.5110-14 1.9 0.041 1.6 0.05110-12 19 0.0041 16 0.0051

Page 27: Presentation Slides for Chapter 16 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Radiative Cooling EffectSaturation vapor pressure over a drop that radiatively heats/cools

relative to one that does not (16.44)

Radiative cooling rate (W) (16.45)

′ p q,s,ipq,s

≈1+Le,qmqHr,i

4πri R*T2 ′ κ d,i

Hr,i = πri2

( )4π Qa mλ,αi,λ( ) Iλ −Bλ( )dλ0

∞∫

Page 28: Presentation Slides for Chapter 16 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Overall Equilibrium Saturation RatioOverall equilibrium saturation ratio for liquid water (16.46)

Equilibrium saturation ratio for gases other than liquid water (16.47)

′ S q,i =′ p q,s,ipq,s

≈1+2σpmp

riR*Tρp,i

−3mvivMs

4πri3ρwms

+Le,qmqHr,i

4πri R*T2 ′ κ d,i

′ S q,i =′ p q,s,ipq,s

≈1+2σpmp

riR*Tρp,i

Page 29: Presentation Slides for Chapter 16 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Flux to Drop With Multiple ComponentsVolume of a single particle in which one species is growing

(16.48)

Time derivative of (16.47) (16.50)

Mass of a single particle in which one species is growing (16.49)

since

υi,t =υq,i,t +υi,t−h −υq,i,t−h

mi,t =ρp,i,tυi,t =ρp,qυq,i,t +ρp,i,t−hυi,t−h −ρp,qυq,i,t−h

dmi,tdt

=ρp,i,tdυi,tdt

=ρp,qdυq,i,t

dt

dυi,t−hdt

=dυq,i,t−h

dt=0

Page 30: Presentation Slides for Chapter 16 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Flux to Drop With Multiple Components

Combine (16.50) and (16.48) with (16.16) (16.51)Rate of change in volume of one component in one multicomponent particle

dυq,i,tdt

=48π2 υq,i,t +υi,t−h−υq,i,t−h( )[ ]

13′ D q,i pq − ′ p q,s,i( )

′ D q,i Le,qρp,q ′ p q,s,i′ κ a,iT

Le,qmq

R*T−1

⎝ ⎜

⎠ ⎟ +

R*Tρp,q

mq

Page 31: Presentation Slides for Chapter 16 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Flux to a Population of DropsVolume as a function of volume concentration

Substitute volumes into (16.49) (16.52)

υq,i,t =vq,i,tni,t−h

dvq,i,tdt

=ni,t−h

23 48π2 vq,i,t +vi,t−h −vq,i,t−h( )[ ]13

′ D q,i pq − ′ p q,s,i( )

′ D q,i Le,qρp,q ′ p q,s,i′ κ a,iT

Le,qmq

R*T−1

⎝ ⎜

⎠ ⎟ +

R*Tρp,q

mq

Page 32: Presentation Slides for Chapter 16 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Flux to a Population of DropsPartial pressure in terms of mole concentration (16.53)

Vapor pressure in terms of mole concentration (16.53)

pq =CqR*T

′ p q,s,i = ′ C q,s,i R*T

Page 33: Presentation Slides for Chapter 16 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Flux to a Population of DropsCombine (16.52) with (16.53) (16.54)

Effective diffusion coefficient (16.55)

dvq,i,tdt

=ni,t−h23

48π2 vq,i,t +vi,t−h−vq,i,t−h( )[ ]13

Dq,i,t−heff mq

ρp,qCq,t − ′ C q,s,i,t−h( )

Dq,i,t−heff =

′ D q,imq ′ D q,i Le,q ′ C q,s,i,t−h

′ κ a,iT

Le,qmq

R*T−1

⎝ ⎜

⎠ ⎟ +1

Page 34: Presentation Slides for Chapter 16 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Flux to a Population of DropsSimplify effective diffusion coefficient for non-water gases (16.56)

Corresponding gas-conservation equation (16.57)

Dq,i,t−heff ≈ ′ D q,i =Dqωq,iFq,L,i =

DqFq,L,i

1+1.33+0.71Knq,i

−1

1+Knq,i−1 +

4 1−αq,i( )

3αq,i

⎢ ⎢

⎥ ⎥ Knq,i

dCq,tdt

=−ρp,qmq

dvq,i,tdt

i=1

NB

Page 35: Presentation Slides for Chapter 16 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Matrix of Partial Derivatives for Growth ODEs

(16.58)

1−hβs∂2vq,1,t∂vq,1,t∂t

0 0 −hβs∂2vq,1,t∂Cq,t∂t

0 1−hβs∂2vq,2,t

∂vq,2,t∂t0 −hβs

∂2vq,2,t

∂Cq,t∂t

0 0 1−hβs∂2vq,3,t∂vq,3,t∂t

−hβs∂2vq,3,t∂Cq,t∂t

−hβs∂2Cq,t

∂vq,1,t∂t−hβs

∂2Cq,t

∂vq,2,t∂t−hβs

∂2Cq,t

∂vq,3,t∂t1−hβs

∂2Cq,t

∂Cq,t∂t

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥

vq,1,t vq,2,t vq,3,t vq,4,t

vq,1,t

vq,2,t

vq,3,t

vq,4,t

Page 36: Presentation Slides for Chapter 16 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Partial Derivatives For Matrix(16.58)

∂2vq,i,t∂vq,i,t∂t

=13

ni,t−hvq,i,t

⎝ ⎜ ⎜

⎠ ⎟ ⎟

2 3

48π2( )

13Dq,i,t−h

eff mqρp,q

Cq,t − ′ C q,s,i,t−h( )

∂2vq,i,t∂Cq,t∂t

=ni,t−h2 3

48π2 vq,i,t +vi,t−h −vq,i,t−h( )[ ]13

Dq,i,t−heff mq

ρp,q

∂2Cq,t∂vq,i,t∂t

=−ρp,qmq

∂2vq,i,t∂vq,i,t∂t

∂2Cq,t∂Cq,t∂t

=−ρp,qmq

∂2vq,i,t∂Cq,t∂t

i=1

NB

(16.60)

(16.61)

(16.62)

Page 37: Presentation Slides for Chapter 16 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Table 16.3

Condensation between gas phase and 16 size bins: NB + 1 = 17

Effect of Sparse-Matrix Reductions When Solving Growth ODEs

Without With Quantity Reductions ReductionsOrder of matrix 17 17Initial fill-in 289 49Final fill-in 289 49 Decomp. 1 1496 16Decomp. 2 136 16Backsub. 1 136 16Backsub. 2 136 16

Page 38: Presentation Slides for Chapter 16 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Analytical Predictor of Condensation (APC) Solution For Solving Growth

Assume radius in growth term constant during time step

Define mass transfer coefficient (16.64)

Change in particle volume concentration (16.63)

dvq,i,tdt

=ni,t−h23

48π2vi,t−h( )13

Dq,i,t−heff mq

ρp,qCq,t − ′ C q,s,i,t−h( )

kq,i,t−h =ni,t−h23

48π2vi,t−h( )13

Dq,i,t−heff =ni,t−h4πri,t−hDq,i,t−h

eff

Page 39: Presentation Slides for Chapter 16 of Fundamentals of Atmospheric Modeling 2 nd  Edition

APC Solution

Volume concentration of a component (16.66)

Effective surface vapor mole concentration (16.65)

Uncorrected surface vapor mole concentration

′ C q,s,i,t−h = ′ S q,i,t−hCq,s,i,t−h

vq,i,t =mqcq,i,tρp,q

Cq,s,i,t−h =pq,s,t−h

R*T

Page 40: Presentation Slides for Chapter 16 of Fundamentals of Atmospheric Modeling 2 nd  Edition

APC Solution

(16.68)

Substitute conversions into (16.63) and (16.57) (16.67)

Integrate (16.67) for final aerosol concentration (16.69)

dcq,i,tdt

=kq,i,t−h Cq,t − ′ S q,i,t−hCq,s,i,t−h( )

dCq,tdt

=− kq,i,t−h Cq,t − ′ S q,i,t−hCq,s,i,t( )[ ]i=1

NB

cq,i,t =cq,i,t−h +hkq,i,t−h Cq,t − ′ S q,i,t−hCq,s,i,t−h( )

Page 41: Presentation Slides for Chapter 16 of Fundamentals of Atmospheric Modeling 2 nd  Edition

APC Solution

Mole balance equation (16.70)

Substitute (16.69) into (16.70) (16.71)

Cq,t + cq,i,t( )i=1

NB

∑ =Cq,t−h + cq,i,t−h( )i=1

NB

∑ =Ctot

Cq,t =

Cq,t−h +h kq,i,t−h ′ S q,i,t−hCq,s,i,t−h( )i=1

NB

1+h kq,i,t−hi=1

NB

Aerosol mole concentration (16.69)

cq,i,t =cq,i,t−h +hkq,i,t−h Cq,t − ′ S q,i,t−hCq,s,i,t−h( )

Page 42: Presentation Slides for Chapter 16 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Fig. 16.2

Comparison of APC growth solution, when h = 10 s, with an exact solution. Both solutions lie almost on top of each other.

APC Growth Simulation

10

-1

10

1

10

3

10

5

10

7

10

9

0.1 1 10 100

dv (

μ

m

3

cm

-3

) / d log

10

D

p

(Particle diameter D

p

, μ )m

Initial

Final

dv (μm

3 cm

-3)

/ d lo

g 10D

p

Page 43: Presentation Slides for Chapter 16 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Solving Homogen. Nucl. with Cond.

Sum nucleation, condensation transfer rates in first bin (16.73)

Homog. nucleation rate converted to mass transfer rate (16.74)

Final number concentration in first bin after nucleation (16.74)

kq,hom,1,t−h =ρqυ1mq

J hom,qCq,t−h− ′ S q,1,t−hCq,s,1,t−h

⎝ ⎜ ⎜

⎠ ⎟ ⎟

kq,1,t−h =kq,cond,1,t−h+kq,hom,1,t−h

n1,t =n1,t−h+MAX cq,1,t −cq,1,t−h( )mq

ρqυ1

kq,hom,1,t−hkq,1,t−h

,0⎡

⎣ ⎢ ⎢

⎦ ⎥ ⎥

Page 44: Presentation Slides for Chapter 16 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Fig. 16.3

Homogeneous Nucleation with Condensation Simultaneously

10

2

10

4

10

6

10

8

10

10

0.001 0.01 0.1 1

Initial

After 8 seconds

dn (No. cm

-3

) / d log

10

D

p

Particle diameter (D

p

, μ )m

dn (

No.

cm

-3)

/ d lo

g 10D

p

Page 45: Presentation Slides for Chapter 16 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Fig. 16.4

Growth plus coagulation pushes particles to larger sizes than does growth alone or coagulation alone

Effect of Coagulation on Condensation

10

-1

10

1

10

3

10

5

0.01 0.1 1 10

dn (No. cm

-3

) / d log

10

D

p

Particle diameter (D

p

, μ )m

.Init

. Coag only

Growth only

Growth

+ .coag

dn (

No.

cm

-3)

/ d lo

g 10D

p

Page 46: Presentation Slides for Chapter 16 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Fig. 16.4

Growth plus coagulation pushes particles to larger sizes than does growth alone or coagulation alone

Effect of Coagulation on Condensation

10

-1

10

0

10

1

10

2

10

3

0.01 0.1 1 10

dv (

μ

m

3

cm

-3

) / d log

10

D

p

(Particle diameter D

p

, μ )m

Initial

. Coag only

Growth

only

+ .Growth coagdv (μm

3 cm

-3)

/ d lo

g 10D

p

Page 47: Presentation Slides for Chapter 16 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Fig. 16.5

Comparison of full-moving (FM) with moving-center (MC) results for growth-only and growth plus coagulation cases shown in Fig. 16.4(a)

Growth With Different Size Structures

10

-1

10

0

10

1

10

2

10

3

10

4

10

5

10

6

0.01 0.1 1 10

dn (No. cm

-3

) / d log

10

D

p

Particle diameter (D

p

, μ )m

Growth

+ .coag

( )MC

Growth

+ .coag

( )FM

Growth

only

( )MC

( )Growth only FM

dn (

No.

cm

-3)

/ d lo

g 10D

p

Page 48: Presentation Slides for Chapter 16 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Ice Crystal Growth

Rate of mass growth of a single ice crystal (16.76)

dmidt

=4πχi ′ D v,i pq − ′ p v,I ,i( )

′ D v,iLs ′ p v,I,i′ κ a,iT

LsRvT

−1⎛

⎝ ⎜

⎠ ⎟ +RvT

Page 49: Presentation Slides for Chapter 16 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Ice Crystal GrowthElectrical capacitance of crystal (cm) (16.77)

ac,i = length of the major semi-axis (cm)

bc,i = length of the minor semi-axis (cm)

χi =

ac,i 2 sphere

ac,iec,i ln 1+ec,i( )ac,i bc,i[ ] prolatespheroid

ac,iec,i sin−1ec,i oblatespheroid

ac,i ln 4ac,i2 bc,i

2( ) needle

ac,iec,i ln 1+ec,i( ) 1−ec,i( )[ ] column

ac,iec,i 2sin−1ec,i( ) hexagonalplate

ac,i π thinplate

⎪ ⎪ ⎪ ⎪ ⎪ ⎪

⎪ ⎪ ⎪ ⎪ ⎪ ⎪

ec,i = 1−bc,i2 ac,i

2

Page 50: Presentation Slides for Chapter 16 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Ice Crystal GrowthEffective saturation vapor pressure over ice

Ventilation factor for falling oblate spheroid crystals (16.78)

x= xq,i for ventilation of gas

x= xh,i for ventilation of energy

′ p v,I ,i = ′ S v,i pv,I

Fq,I,i, Fh,I,i =1+0.14x2 x <1.0

0.86+0.28x x ≥1.0

⎧ ⎨ ⎩


Recommended