+ All Categories
Home > Documents > Presentation Slides for Chapter 18 of Fundamentals of Atmospheric Modeling 2 nd Edition

Presentation Slides for Chapter 18 of Fundamentals of Atmospheric Modeling 2 nd Edition

Date post: 16-Mar-2016
Category:
Upload: nan
View: 21 times
Download: 0 times
Share this document with a friend
Description:
Presentation Slides for Chapter 18 of Fundamentals of Atmospheric Modeling 2 nd Edition. Mark Z. Jacobson Department of Civil & Environmental Engineering Stanford University Stanford, CA 94305-4020 [email protected] April 1, 2005. Cloud Formation. - PowerPoint PPT Presentation
Popular Tags:
69
Presentation Slides for Chapter 18 of Fundamentals of Atmospheric Modeling 2 nd Edition Mark Z. Jacobson partment of Civil & Environmental Engineerin Stanford University Stanford, CA 94305-4020 [email protected] April 1, 2005
Transcript
Page 1: Presentation Slides for Chapter 18 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Presentation Slides for

Chapter 18of

Fundamentals of Atmospheric Modeling 2nd Edition

Mark Z. JacobsonDepartment of Civil & Environmental Engineering

Stanford UniversityStanford, CA [email protected]

April 1, 2005

Page 2: Presentation Slides for Chapter 18 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Cloud Formation

Table 18.1

Altitude range (km) of different cloud-formation étages

Étage Polar Temperate TropicalHigh 3-8 5-13 6-9Middle 2-4 2-7 2-8Low 0-2 0-2 0-2

Page 3: Presentation Slides for Chapter 18 of Fundamentals of Atmospheric Modeling 2 nd  Edition

FogCloud touching the ground

Radiation FogForms as the ground cools radiatively at night, cooling the air above it to below the dew point.

Advection FogForms when warm, moist air moves over a colder surface and cools to below the dew point.

Upslope Fog Forms when warm, moist air flows up a slope, expands, and cools to below the dew point.

Page 4: Presentation Slides for Chapter 18 of Fundamentals of Atmospheric Modeling 2 nd  Edition

FogEvaporation Fog

Forms when water evaporates in warm, moist air, then mixes with cooler, drier air and re-condenses.

Steam FogOccurs when warm surface water evaporates, rises into cooler air, and recondenses, giving the appearance of rising steam.

Frontal FogOccurs when water from warm raindrops evaporates as the drops fall into a cold air mass. The water then recondenses to form a fog. Warm over cold air appears ahead of an approaching surface front.

Page 5: Presentation Slides for Chapter 18 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Cloud ClassificationLow clouds (0-2 km)

Stratus (St)Stratocumulus (Sc)Nimbostratus (Ns)

Middle clouds (2-7 km)Altostratus (As) Altocumulus (Ac)

High clouds (5-18 km)Cirrus (Ci)Cirrostratus (Cs)Cirrocumulus (Cc)

Clouds of vertical development (0-18 km)Cumulus (Cu)Cumulonimbus (Cb)

stratus = "layer"cumulus = "clumpy"cirrus = "wispy"nimbus = "rain"

Page 6: Presentation Slides for Chapter 18 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Low Clouds

StratusA low, gray uniform cloud layer composed of water droplets that often produces drizzle.

StratocumulusLow, lumpy, rounded clouds with blue sky between them.

NimbostratusDark, gray clouds associated with continuous precipitation. Not accompanied by lightning, thunder, or hail.

Page 7: Presentation Slides for Chapter 18 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Middle Clouds

AltostratusLayers of uniform gray clouds composed of water droplets and ice crystals. The sun or moon is dimly visible in thinner regions.

AltocumulusPatches of wavy, rounded rolls, made of water droplets and ice crystals.

Page 8: Presentation Slides for Chapter 18 of Fundamentals of Atmospheric Modeling 2 nd  Edition

High CloudsCirrus

High, thin, featherlike, wispy, ice crystal clouds.

CirrostratusHigh, thin, sheet-like, ice crystal clouds that often cover the sky and cause a halo to appear around the sun or moon.

CirrocumulusHigh, puffy, rounded, ice crystal clouds that often form in ripples.

Page 9: Presentation Slides for Chapter 18 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Clouds of Vertical DevelopmentCumulus

Clouds with flat bases and bulging tops. Appear in individual, detached domes, with varying degrees of vertical growth.

Cumulus humilisLimited vertical development

Cumulus congestusExtensive vertical development

CumulonimbusDense, vertically developed cloud with a top that has the shape of an anvil. Can produce heavy showers, lightning, thunder, and hail. Also known as a thunderstorm cloud.

Page 10: Presentation Slides for Chapter 18 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Cloud FormationCloud Formation Mechanisms

free convectionforced convectionorographyfrontal lifting

Fig. 18.1

Formation of clouds along a cold and warm front, respectively

.

Cold airWarm air

Cold airCold front Warm air

Warm front

Page 11: Presentation Slides for Chapter 18 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Pseudoadiabatic ProcessCondensation, latent heat release occurs during adiabatic ascent

Pseudoadiabatic process (18.1)

Saturation mass mixing ratio of water vapor over liquid water

Adiabatic process dQ = 0

dQ=−Ledωv,s

ωv,s =εpv,spd

Page 12: Presentation Slides for Chapter 18 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Pseudoadiabatic Process

(18.5)

Differentiate v,s=pv,s/pd with respect to altitude, substitute

dpv,s =Lepv,sdT RvT2

ωv,s =εpv,s pd

′ R =εRv

∂pd ∂z=−pdg ′ R T

∂ωv,s∂z = ε

pd

∂pv,s∂z − pv,s

pd

∂pd∂z

⎛ ⎝ ⎜

⎞ ⎠ ⎟ =

Leεωv,s′ R T2

∂T∂z +ωv,sg

′ R T

Page 13: Presentation Slides for Chapter 18 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Pseudoadiabatic ProcessSubstitute (18.5) and d,m=g/cp,m into (18.4) (18.6)

Example 18.1 pd = 950 hPaT = 283 K

---> pv,s = 12.27 hPa---> v,s = 0.00803 kg kg-1

---> w = 5.21 K km-1

T = 293 K---> w = 4.27 K km-1

∂T∂z

⎛ ⎝ ⎜ ⎞

⎠ ⎟ w

=−Γw =−Γd,m 1+Leωv,s′ R T

⎛ ⎝ ⎜ ⎞

⎠ ⎟ 1+ Le2εωv,s′ R cp,mT2

⎝ ⎜ ⎜

⎠ ⎟ ⎟

Page 14: Presentation Slides for Chapter 18 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Dry or Moist Air Stability Criteria(18.7)

Γe>Γd,m absolutely unstableΓe=Γd,m unsaturated neutralΓd,m>Γe >Γw conditionally unstableΓe=Γw saturated neutralΓe<Γw absolutely stable

⎪ ⎪ ⎪

⎪ ⎪ ⎪

Page 15: Presentation Slides for Chapter 18 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Stability in Dry or Moist Air

Fig. 18.2

0.8

1

1.2

1.4

1.6

1.8

2

2.2

-2 0 2 4 6 8 10 12 14

Altitude (km)

Temperature (

o

C)

Absolutly

stabl

Absolutly

unstabl

Conditionally

unstabl

1 4

32

d,m

Alti

tude

(km

)

Page 16: Presentation Slides for Chapter 18 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Stability in Multiple Layers

0

0.5

1

1.5

2

2.5

3

0 5 10 15 20 25

Altitude (km)

Temperature (oC)

e

Γd

ΓwA

ltitu

de (k

m)

Absolutely unstable

Absolutely stable

Unsaturated neutral

Conditionally unstable

Saturated neutral

Saturated neutral

Fig. 18.3

Page 17: Presentation Slides for Chapter 18 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Equivalent Potential TemperaturePotential temperature a parcel of air would have if all its water vapor were

condensed and the resulting latent heat were released and used to heat the parcel

Equivalent potential temperature in unsaturated air (18.8)

Equivalent potential temperature in unsaturated air (18.9)

θp,e≈θpexp Lecp,dT ωv,s

⎛ ⎝ ⎜ ⎜

⎞ ⎠ ⎟ ⎟

θp,e≈θpexp Lecp,dTLCL

ωv⎛ ⎝ ⎜ ⎜

⎞ ⎠ ⎟ ⎟

Page 18: Presentation Slides for Chapter 18 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Equivalent Potential Temperature

Fig. 18.4

Relationship between potential temperature and equivalent potential temperature

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30 35

Altitude (km)

Temperature (K)

LCL

θ

θ

d,m

d

p

p,Alti

tude

(km

)

Page 19: Presentation Slides for Chapter 18 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Cumulus Cloud Development

0

0.5

1

1.5

2

2.5

3

5 10 15 20 25 30 35

Altitude (km)

Temperature (oC)

d

Γw

Alti

tude

(km

)

Dew point ofrising bubble

Temperature ofrising bubble

LCL

Cloud temperature

Cloud top

Fig. 18.5

Page 20: Presentation Slides for Chapter 18 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Isentropic Condensation Temperature

Temperature at the base of a cumulus cloudOccurs at the lifting condensation level (LCL), which is that altitude at which the dew point meets parcel temperature.

Isentropic condensation temperature (18.11)

TIC ≈4880.357−29.66ln ωvpd,0

εTICT0

⎛ ⎝ ⎜

⎞ ⎠ ⎟ 1κ⎡

⎣ ⎢ ⎢

⎦ ⎥ ⎥

19.48−ln ωvpd,0ε

TICT0

⎛ ⎝ ⎜

⎞ ⎠ ⎟ 1κ⎡

⎣ ⎢ ⎢

⎦ ⎥ ⎥

Page 21: Presentation Slides for Chapter 18 of Fundamentals of Atmospheric Modeling 2 nd  Edition

EntrainmentMixing of relatively cool, dry air from outside the cloud with warm, moist air inside the cloud

Factors affecting the temperature inside a cloud

1) Energy loss from cloud due to warming of entrained, ambient air by the cloud (18.12)

2) Energy loss from cloud due to evaporation of liquid water in the cloud to ensure entrained, ambient air is saturated (18.13)

3) Energy gained by cloud during condensation of rising air (18.14)

dQ1* =−cp,d Tv − ˆ T v( )dMc

dQ2* =−Le ωv,s− ˆ ω v( )dMc

dQ3* =−McLedωv,s

Page 22: Presentation Slides for Chapter 18 of Fundamentals of Atmospheric Modeling 2 nd  Edition

EntrainmentSum the three sources and sinks of energy (18.15)

First law of thermodynamics (18.16)

Subtract (18.16) from (18.15) and rearrange (18.17)

dQ* =−cp,d Tv − ˆ T v( )dMc −Le ωv,s− ˆ ω v( )dMc −McLedωv,s

dQ* =Mc cp,ddTv −αadpa( )

cp,ddTv −αadpa =−cp,d Tv − ˆ T v( )+Le ωv,s− ˆ ω v( )[ ]dMcMc

−Ledωv,s

Page 23: Presentation Slides for Chapter 18 of Fundamentals of Atmospheric Modeling 2 nd  Edition

EntrainmentDivide by cp,d Tv and substitute aa=R’Tv/pa (18.18)

Rearrange and differentiate with respect to height (18.19)

No entrainment (dMc = 0) --> pseudoadiabatic temp. change

dTvTv

− ′ R cp,d

dpapa

=− Tv − ˆ T vTv

+Le ωv,s − ′ ω v( )

cp,dTv

⎣ ⎢ ⎢

⎦ ⎥ ⎥

dMcMc

−Ledωv,scp,dTv

∂Tv∂z =− g

cp,d− Tv − ˆ T v( )+ Le

cp,dωv,s− ˆ ω v( )

⎡ ⎣ ⎢ ⎢

⎤ ⎦ ⎥ ⎥

1Mc

∂Mc∂z − Le

cp,d∂ωv,s

∂z

Page 24: Presentation Slides for Chapter 18 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Cloud Vertical Temperature ProfileChange of potential virtual temperature with altitude (2.103)

Rearrange (18.20)

Substitute into (18.19) --> change of potential virtual temperature in entrainment region

∂θv∂z =θv

Tv

∂Tv∂z −κ θv

pa

∂pa∂z

∂Tv∂z =Tv

θv

∂θv∂z + ′ R Tv

cp,dpa

∂pa∂z =Tv

θv

∂θv∂z − g

cp,d

∂θv∂z =−θv

TvTv − ˆ T v( )+ Le

cp,dωv,s− ˆ ω v( )

⎡ ⎣ ⎢ ⎢

⎤ ⎦ ⎥ ⎥

1Mc

∂Mc∂z −θv

Tv

Lecp,d

∂ωv,sdz

Page 25: Presentation Slides for Chapter 18 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Cloud Thermodynamic Energy Eq.Multiply through by dz and dividing through by dt (18.22)

Entrainment rate (18.23)

dθvdt =−θv

TvTv − ˆ T v( )+ Le

cp,dωv,s− ˆ ω v( )

⎡ ⎣ ⎢ ⎢

⎤ ⎦ ⎥ ⎥ E − θvLe

cp,dTv

dωv,sdt

E = 1Mc

dMcdt ≈ 3

4πrt3ddt

4πrt33

⎛ ⎝ ⎜

⎞ ⎠ ⎟

Page 26: Presentation Slides for Chapter 18 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Cloud Thermodynamic Energy Eq.Add terms to (18.22)

--> thermodynamic energy equation in a cloud (18.24)

dθvdt =−θv

TvTv − ˆ T v( )+ Le

cp,dωv,s− ˆ ω v( )

⎡ ⎣ ⎢ ⎢

⎤ ⎦ ⎥ ⎥ E + 1

ρa∇ •ρaKh∇( )θv

+ θvcp,dTv

−Ledωv,s

dt −LmdωLdt −Ls

dωv,Idt +dQsolar

dt +dQirdt

⎛ ⎝ ⎜ ⎞

⎠ ⎟

Page 27: Presentation Slides for Chapter 18 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Cloud Vertical Momentum EquationVertical momentum equation in Cartesian / altitude coordinates (18.25)

Add hydrostatic equation, for air outside cloud (18.26)

dwdt =−g− 1

ρa

∂pa∂z + 1

ρa∇ •ρaKm∇( )w

∂ˆ p a ∂z =−̂ ρ ag

dwdt =−gρa −ˆ ρ a

ρa− 1

ρa

∂ pa − ˆ p a( )∂z + 1

ρa∇ •ρaKm∇( )w

Page 28: Presentation Slides for Chapter 18 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Cloud Vertical Momentum EquationBuoyancy factor (18.27)

Adjust buoyancy factor for condensate (18.28)

B=−ρa −ˆ ρ aρa

=−pa ˆ T v − ˆ p aTvpa ˆ T v

=−ˆ T v −Tv

ˆ T v+ Tv

ˆ T v

⎛ ⎝ ⎜

⎞ ⎠ ⎟

ˆ p a −papa

≈−ˆ θ v −θv

ˆ θ v

B=−ρa −ˆ ρ aρa

=−ˆ θ v 1+ωL( )−θv 1+ ˆ ω L( )

ˆ θ v≈θv −ˆ θ v

ˆ θ v−ωL

Page 29: Presentation Slides for Chapter 18 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Cloud Vertical Momentum EquationSubstitute (18.28) into (18.26) (18.29)

Rewrite pressure gradient term (18.30)

Substitute (18.30) and (18.29)--> vertical momentum equation in a cloud (18.31)

dwdt =g θv −ˆ θ v

ˆ θ v−ωL

⎛ ⎝ ⎜

⎞ ⎠ ⎟ − 1

ρa

∂ pa − ˆ p a( )∂z + 1

ρa∇ •ρaKm∇( )w

1ρa

∂pa∂z =−g =−∂Φ

∂z =cp,dθv∂P∂z

dwdt =g θv −ˆ θ v

ˆ θ v−ωL

⎛ ⎝ ⎜

⎞ ⎠ ⎟ −cp,dθv

∂ P − ˆ P ( )∂z + 1

ρa∇•ρaKm∇( )w

Page 30: Presentation Slides for Chapter 18 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Simplified Vertical Velocity in CloudSimplify (18.31) for basic calculations

Ignore pressure perturbation and the eddy diffusion term (18.32)

where

Integrate over altitude --> vertical velocity in a cloud (18.33)

Rearrange (18.32)

dwdt =dw

dzdzdt =dw

dz w =g θv −ˆ θ vˆ θ v

−ωL⎛ ⎝ ⎜

⎞ ⎠ ⎟ =gB

w =dzdt

wdw=gBdz

w2 =wa2 +2g θv −ˆ θ v

ˆ θ v−ωL

⎛ ⎝ ⎜

⎞ ⎠ ⎟ za

z∫ dz =wa2 +2g Bza

z∫ dz

Page 31: Presentation Slides for Chapter 18 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Convective Available Potential Energy(18.34)

CAPE =g BzLFC

zLNB∫ dz≈g θv −ˆ θ vˆ θ v

⎛ ⎝ ⎜

⎞ ⎠ ⎟ zLFC

zLNB∫ dz

Page 32: Presentation Slides for Chapter 18 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Cloud MicrophysicsAssume clouds form on multiple aerosol particle size distributionsEach aerosol distribution consists of multiple discrete size binsEach size bin contains multiple chemical componentsThree cloud hydrometeor distributions can form

LiquidIceGraupel

Each hydrometeor distribution contains multiple size bins.Each size bin contains the chemical components of the aerosol distribution it originated from

Page 33: Presentation Slides for Chapter 18 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Cloud MicrophysicsProcesses considered

Condensation/evaporationIce deposition/sublimationHydrometeor-hydrometeor coagulationLarge liquid drop breakupContact freezing of liquid dropsHomogeneous/heterogeneous freezingDrop surface temperatureSubcloud evaporationEvaporative freezingIce crystal meltingHydrometeor-aerosol coagulationGas washoutLightning

Page 34: Presentation Slides for Chapter 18 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Condensation and Ice DepositionCondensation/deposition onto multiple aerosol distributions

(18.35)

(18.36)

dcL,Ni,tdt =kL,Ni,t−h Cv,t − ′ S L,Ni,t−hCL,s,t−h( )

dcI ,Ni,tdt =kI ,Ni,t−h Cv,t − ′ S I,Ni,t−hCI ,s,t−h( )

dCv,tdt =−

kL,Ni,t−h Cv,t − ′ S L,Ni,t−hCL,s,t−h( )+kI,Ni,t−h Cv,t − ′ S I,Ni,t−hCI,s,t−h( )

⎣ ⎢ ⎢

⎦ ⎥ ⎥ i=1

NB∑N=1

NT∑

Water vapor-hydrometeor mass balance equation (18.37)

Page 35: Presentation Slides for Chapter 18 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Vapor-Hydrometeor Transfer Rates(18.38,9)

kL,Ni =nlq,Ni4πrNiDvωv,L,NiFv,L,Ni

mvDvωv,L,NiFv,L,NiLe ′ S L,NiCL,sκaωh,NiFh,L,NiT

LemvR*T

−1⎛ ⎝ ⎜ ⎞

⎠ ⎟ +1

kI ,Ni = nic,Ni4πχNiDvωv,I ,NiFv,I ,NimvDvωv,I ,NiFv,I,NiLs ′ S I,NiCI ,s

κaωh,NiFh,I ,NiTLsmvR*T

−1⎛ ⎝ ⎜ ⎞

⎠ ⎟ +1

Page 36: Presentation Slides for Chapter 18 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Köhler EquationsLiquid (18.40)

Ice (18.41)

Rewrite as (18.42)

′ S L,Ni,t−h ≈1+2σ L,Ni,t−hmvrNiR*TρL

− 3mv4πrNi

3ρLnNi,t−hcq,Ni,t−h

q=1

Ns∑

′ S I,Ni,t−h ≈1+2σI,Ni,t−hmvrNiR*TρI

′ S L,Ni,t−h ≈1+aL,Ni,t−hrNi

−bL,Ni,t−hrNi3

Page 37: Presentation Slides for Chapter 18 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Köhler Equations(18.43)

aL,Ni,t−h =2σL,Ni,t−hmvR*TρL

bL,Ni,t−h = 3mw4πρLnNi,t−h

cq,Ni,t−hq=1

Ns∑Solve for critical radius and critical saturation ratio (18.44)

rL,Ni,t−h* = 3bL,Ni,t−h

aL,Ni,t−h

SL,Ni,t−h* =1+

4aL,Ni,t−h3

27bL,Ni,t−h

Page 38: Presentation Slides for Chapter 18 of Fundamentals of Atmospheric Modeling 2 nd  Edition

CCN and IDN ActivationCloud condensation nuclei (CCN) activation (18.45)

Ice deposition nuclei (IDN) activation (18.46)

rNi >rL,Ni* and Cv,t−h > ′ S L,Ni,t−hCL,s,t−h

orrNi ≤rL,Ni

* and Cv,t−h >SL,Ni,t−h* CL,s,t−h

⎧ ⎨ ⎪ ⎪

⎩ ⎪ ⎪

Cv,t−h > ′ S I,Ni,t−hCI ,s,t−h{

Page 39: Presentation Slides for Chapter 18 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Solution to Growth EquationsAerosol mole concentrations (18.47,8)

Mole balance equation (18.49)

cL,Ni,t =cL,Ni,t−h +hkL,Ni,t−h Cv,t − ′ S L,Ni,t−hCL,s,t−h( )

cI,Ni,t =cI,Ni,t−h+hkI,Ni,t−h Cv,t− ′ S I ,Ni,t−hCI,s,t−h( )

Cv,t + cL,Ni,t +cI,Ni,t( )i=1

NB∑N=1

NT∑

=Cv,t−h + cL,Ni,t−h+cI,Ni,t−h( )i=1

NB∑N=1

NT∑ =Ctot

Page 40: Presentation Slides for Chapter 18 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Solution to Growth Equations

Final gas mole concentration (18.50)

Cv,t =Cv,t−h+h

kL,Ni,t−h ′ S L,Ni,t−hCs,L,t−h +kI,Ni,t−h ′ S I,Ni,t−hCs,I ,t−h

⎛ ⎝ ⎜

⎞ ⎠ ⎟

i=1

NB∑N=1

NT∑1+h kLi,t−h +kIi ,t−h( )

i =1

NB∑N=1

NT∑

Page 41: Presentation Slides for Chapter 18 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Growth in Multiple Layers

Fig. 18.6

Dual peaks when grow on multiple size distributions, each with different activation characteristic

0

200

400

600

800

1000

1200

1400

1600

10 100

dn (No. cm

-3

) / d log

10

D

p

Particle diameter (D

p

, m m)

788hPa

656hPa

872hPa

729hPa

835hPa

dn (N

o. c

m-3) /

d lo

g 10 D

p

Page 42: Presentation Slides for Chapter 18 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Growth in Multiple Layers

Fig. 18.6

Single peaks when size distribution homogeneous

0

200

400

600

800

1000

1200

1400

1600

10 100

dn (No. cm

-3

) / d log

10

D

p

Particle diameter (D

p

, m m)

788hPa

656hPa

872hPa

729hPa

835hPa

dn (N

o. c

m-3) /

d lo

g 10 D

p

Page 43: Presentation Slides for Chapter 18 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Hydrometeor-Hydrometeor CoagulationFinal volume concentration of component or total particle

(18.53)

vx,Yk,t =vx,Yk,t−h +h Tx,Yk,t,1+Tx,Yk,t,2( )

1+hTx,Yk,t,3

Tx,Yk,t,1 = PY,M nMj,t−h fYi,Mj,YkβYi,Mj,t−hvx,Yi,ti=1

k−1∑⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟

j=1

k∑

⎣ ⎢ ⎢

⎦ ⎥ ⎥ M=1

NH∑

Tx,Yk,t,2 = QI,M,Y nMj,t−h fIi ,Mj,YkβIi,Mj,t−hvx,Ii,ti=1

k∑⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟

j=1

k∑

⎣ ⎢ ⎢

⎦ ⎥ ⎥ I=1

NH∑M=1

NH∑

Tx,Yk,t,3 = 1−LY,M( )1−fYk,Mj,Yk( )+LY,M[ ]βYk,Mj,t−hnMj,t−hM=1

NH∑⎡

⎣ ⎢ ⎢

⎦ ⎥ ⎥ j =1

NC∑

Page 44: Presentation Slides for Chapter 18 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Hydrometeor-Hydrometeor CoagulationFinal number concentration (18.54)

Volume fraction of coagulated pair partitioned to a fixed bin (18.55)

nlq,k,t =vT,lq,k,tυlq,k

fIi ,Mj,Yk =

υYk+1−VIi ,MjυYk+1−υYk

⎛ ⎝ ⎜

⎞ ⎠ ⎟ υNk

VIi,MjυYk≤VIi,Mj <υYk+1 k <NC

1−fIi,Mj,Yk−1 υYk-1<VIi,Mj <υYk k >11 VIi,Mj ≥υYk k =NC0 all othercases

⎪ ⎪ ⎪

⎪ ⎪ ⎪

Page 45: Presentation Slides for Chapter 18 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Drop Breakup Size Distribution

Fig. 18.7

Drops breakup when they reach a given size

0

0.5

1

1.5

2

2.5

0 1000 2000 3000 4000 5000 6000

dM / M

T

d log

10

D

p

Particle diameter (D

p

, m m)

Brakupdistribution

dM /

MT d

log 10

Dp

Page 46: Presentation Slides for Chapter 18 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Contact FreezingFinal volume concentration of total liquid drop or its components (18.59)

Final volume concentration of a graupel particle in a size bin or of an individual component in the particle (18.60)

(18.61)

vx,lq,k,t =vx,lq,k,t−h1+hTx,k,t,3

Tx,k,t,3 =FT βYk,Nj,t−hFICN,NjnNj,t−hN=1

NT∑⎡

⎣ ⎢ ⎢

⎦ ⎥ ⎥ j =1

NC∑

vx,gr,k,t =vx,gr,k,t−h +vx,lq,k,thTx,k,t,3

Page 47: Presentation Slides for Chapter 18 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Contact FreezingFinal number concentrations (18.62)

Temperature-dependence parameter (18.64)

(18.63)

nlq,k,t =vT,lq,k,tυlq,k

ngr,k,t =vT,gr,k,tυgr,k

FT =0 T >−3o C−T +3( ) 15 −18<T <−3oC1 T <−18o C

⎨ ⎪ ⎪

⎩ ⎪ ⎪

Page 48: Presentation Slides for Chapter 18 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Homogeneous/Heterogeneous FreezingFractional number of drops of given size that freeze (18.65)

Median freezing temperature (18.66)

FFr,k,t =minυlq,k exp−B Tc −Tr( )[ ],1{ }

Tmf =Tr −1B ln 0.5

υlq,k

⎛ ⎝ ⎜ ⎜

⎞ ⎠ ⎟ ⎟

B=0.475oC−1; Tr =0oC Tm≤−15oCB=1.85oC−1; Tr =−11.14oC −15oC ≤Tm<−10oC

⎧ ⎨ ⎪ ⎩ ⎪

Page 49: Presentation Slides for Chapter 18 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Homogeneous/Heterogeneous Freezing

Fig. 18.8

Fitted versus observed median freezing temperatures

-28

-24

-20

-16

-12

10 100 1000 10

4

Median Freezing Temperature (

o

C)

Particle radius ( m m)

Med

ian

free

zing

tem

pera

ture

(o C)

Page 50: Presentation Slides for Chapter 18 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Homogeneous/Heterogeneous FreezingTime-dependent freezing rate (18.67)

Final number conc. of drops and graupel particles after freezing (18.68)

(18.69)

dngr,k,tdt =nlq,k,t−hυlq,kAexp−B Tc −Tr( )[ ]

nlq,k,t =nlq,k,t−h 1−FFr ,k,t( )

ngr,k,t =ngr,k,t−h+nlq,k,t−hFFr,k,t

Page 51: Presentation Slides for Chapter 18 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Homogeneous/Heterogeneous Freezing

Fractional number of drops that freeze (18.70)

Time-dependent median freezing temperature (18.71)

FFr,k,t =1−exp−hAυlq,k exp−B Tc −Tr( )[ ]{ }

Tmf =Tr −1B ln ln0.5

hAυlq,k

⎛ ⎝ ⎜ ⎜

⎞ ⎠ ⎟ ⎟

Page 52: Presentation Slides for Chapter 18 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Homogeneous/Heterogeneous Freezing

Fig. 18.9

Simulated liquid and graupel size distributions with and without homogeneous/heterogeneous freezing after one hour

10

-8

10

-6

10

-4

10

-2

10

0

10

2

1 10 100 1000 10

4

dn (No. cm

-3

) / d log

10

D

p

Particle diameter (D

p

, m m)

Liθuid,

baslin

(ithHHF)

Layrblo

Cloudtop

236.988K

214hPa

Liθuid,

noHHF

raupl,

noHHF raupl,

baslin

(ithHHF)

dn (N

o. c

m-3) /

d lo

g 10 D

p

Page 53: Presentation Slides for Chapter 18 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Drop Surface TemperatureIterate for drop surface temperature at sub-100 percent RH

(18.72)

ps,n = pv,s Ts,n( )

Δpv,n =0.3 ps,n−pv,n[ ]pf,n =0.5 ps,n +pv,n( )

Tf,n =0.5 Ts,n+Ta( )

Ts,n+1 =Ts,n − DvLeκa 1−pf,n pa( )

Δpv,nRvTf,n

pv,n+1=pv,n+Δpv,n

Page 54: Presentation Slides for Chapter 18 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Drop Surface Temperature vs. RH

Fig. 18.10

270

275

280

285

0

5

10

15

20

0 0.2 0.4 0.6 0.8 1

Temperature (K)

Vapor pres. (hPa) and final RH x 10

Initial relative humidity (fraction)

Initial and final T

a

and initial T

s

Final T

s

Final p

v

= final p

s

Initial p

v

Final RHx10

Initial p

s

Tem

pera

ture

(K)

Vapor pressure (hPa) and final R

H x 10

Air temperature = 283.15 K

Page 55: Presentation Slides for Chapter 18 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Drop Surface Temperature vs. RH

Fig. 18.10

Air temperature = 245.94 K

240

241

242

243

244

245

246

247

248

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Temperature (K)

Vapor pres. (hPa) and final RH

Initial relative humidity (fraction)

Initial and final T

a

and initial T

s

Final T

s

Final p

v

= final p

s

Initial p

v

Final RH

Initial p

s

Tem

pera

ture

(K)

Vapor pressure (hPa) and final R

H x 10

Page 56: Presentation Slides for Chapter 18 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Drop Surface Temperature vs. RH

Fig. 18.10

222

222.5

223

223.5

0

0.02

0.04

0.06

0.08

0.1

0 0.2 0.4 0.6 0.8 1

Temperature (K)

Vapor pres. (hPa) and final RHx0.01

Initial relative humidity (fraction)

Initial and final T

a

and initial T

s

Final T

s

Final p

v

= final p

s

Initial p

v

Final RH x 0.01

Initial p

s

Vapor pressure (hPa) and final R

H x 10

Tem

pera

ture

(K)

Air temperature = 223.25 K

Page 57: Presentation Slides for Chapter 18 of Fundamentals of Atmospheric Modeling 2 nd  Edition

EvaporationReduction in volume due to evaporation/sublimation (18.73)

vL,lq,k,t,m=MAX vL,lq,k,t−h −nlq,k4πrkDv1−pf,nf pa( )

pv,s,0 −pv,nf( )ρLRvTf,nf

ΔzVf,lq,k

,0⎡

⎣ ⎢ ⎢

⎦ ⎥ ⎥ m

Reduction in precipitation size due to evaporation below cloud base

Fig. 18.1110

-4

10

-3

10

-2

10

-1

10

0

10

1

10

2

10

3

1 10 100 1000 10

4

dn (No. cm

-3

) / d log

10

D

p

Particle diameter (D

p

, m m)

Cloudbas

(872hPa)

Surfac,

RH=75%

blobas

Surfac,

RH=99%

blobas

dn (N

o. c

m-3) /

d lo

g 10 D

p

Page 58: Presentation Slides for Chapter 18 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Evaporative Freezing

Fig. 18.12

Incremental homogeneous/heterogeneous freezing due to evaporative cooling below a cloud base

10

-8

10

-6

10

-4

10

-2

10

0

10 100

dn (No. cm

-3

) / d log

10

D

p

Particle diameter (D

p

, m m)

Liθuiddistribution

atRH=100%,

p

a

=214hPa

T

a

=236.988K

Additonal

portionof

liθ.distrib.that

frzsduto

vap.coolingat

RH=80%

dn (N

o. c

m-3) /

d lo

g 10 D

p

When drops fall into regions of sub-100 percent RH below cloud base, they start to evaporate and cool. If the temperature is below the freezing temperature, the cooling increases the rate of drop freezing.

Page 59: Presentation Slides for Chapter 18 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Ice Crystal MeltingWhen an ice crystal melts in sub-100 percent relative humidity air, simultaneous evaporation of the liquid meltwater cools the particle

surface, retarding the rate of melting. Thus, the melting temperature must be higher than that of bulk ice in saturated air.

Melting point (18.74)

Time-dependent change in particle mass due to melting (18.75)

Tmelt=T0 +MAX DvLeκaRv

pv,s T0( )T0

−pvTa

⎡ ⎣ ⎢

⎤ ⎦ ⎥ ,0

⎧ ⎨ ⎪ ⎩ ⎪

⎫ ⎬ ⎪ ⎭ ⎪

mic,Ni,t =mic,Ni,t−h -MAX h4πrNiLm

κa Ta −T0( )Fh,I,Ni −DvLeRv

pv,s T0( )T0

−pvTa

⎛ ⎝ ⎜

⎞ ⎠ ⎟ Fv,I,Ni

⎢ ⎢ ⎢

⎥ ⎥ ⎥ ,0

⎧ ⎨ ⎪ ⎪

⎩ ⎪ ⎪

⎫ ⎬ ⎪ ⎪

⎭ ⎪ ⎪

Page 60: Presentation Slides for Chapter 18 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Aerosol-Hydrometeor CoagulationFinal volume conc. of total aerosol particle or its components (18.76)

vx,Nk,t = vx,Nk,t−h1+hTx,Nk,t,3

Tx,Nk,t,3 = βNk,Mj,t−hnMj,t−hM=1

NH∑⎡

⎣ ⎢ ⎢

⎦ ⎥ ⎥ j=1

NC∑

Page 61: Presentation Slides for Chapter 18 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Aerosol-Hydrometeor CoagulationFinal volume conc. of total hydrometeor or aerosol inclusions (18.77)

vx,Yk,t =vx,Yk,t−h +h Tx,Yk,t,1+Tx,Yk,t,2( )

1+hTx,Yk,t,3

Tx,Yk,t,1 = nNj,t−h fYi,Nj,YkβYi,Nj,t−hvx,Yi,ti=1

k−1∑⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟

j =1

k∑

⎣ ⎢ ⎢

⎦ ⎥ ⎥ N=1

NT∑

Tx,Yk,t,2 = nYj,t−h fNi,Yj,YkβNi,Yj,t−hvx,Ni,ti=1

k∑⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟

j=1

k∑

⎣ ⎢ ⎢

⎦ ⎥ ⎥ N=1

NT∑

Tx,Yk,t,3 = 1−fYk,Nj,Yk( )βYk,Nj,t−hnNj,t−hN=1

NT∑⎡

⎣ ⎢ ⎢

⎦ ⎥ ⎥ j =1

NB∑

Page 62: Presentation Slides for Chapter 18 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Aerosol-Hydrometeor CoagulationFinal number concentrations (18.78)

(18.79)

nNk,t =vT,Nk,tυNk

nYk,t =vT,Yk,tυYk

Page 63: Presentation Slides for Chapter 18 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Aerosol-Hydrometeor Coagulation

Fig. 18.13

Below-cloud aerosol number and volume concentration before (solid lines) and after (short-dashed lines) aerosol-hydrometeor coagulation

0

500

1000

1500

2000

0

5

10

15

20

25

30

35

0.001 0.01 0.1 1 10 100

dn (No. cm

-3

) / d log

10

D

p

dV(

m

m

3

cm

-3

)/dlog

10

D

p

Particldiamtr(D

p

, m m)

Arosol

volum

Arosol

numbr

Blocloudbas

(902hPa)

dn (N

o. c

m-3) /

d lo

g 10 D

pdv (mm

3 cm-3) / d log

10 Dp

Page 64: Presentation Slides for Chapter 18 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Gas WashoutGas-hydrometeor equilibrium relation (18.80)

Gas-hydrometeor mass-balance equation (18.81)

cq,lq,t,mCq,t,m

= ′ H qR*T pL,lq,t,mk=1

NC∑

Cq,t,m+cq,lq,t,m=Cq,t−h,m+cq,lq,t,m−1Δzm−1Δzm

Page 65: Presentation Slides for Chapter 18 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Gas WashoutFinal gas concentration in layer m (18.82)

Final aqueous mole concentration (18.83)

Cq,t,m=Cq,t−h,m+cq,lq,t,m−1

Δzm−1Δzm

1+ ′ H qR*T pL,lq,t,mk=1

NC∑

cq,lq,t,m=Cq,t−h,m+cq,lq,t,m−1Δzm−1Δzm

−Cq,t,m

Page 66: Presentation Slides for Chapter 18 of Fundamentals of Atmospheric Modeling 2 nd  Edition

LightningCoulomb’s law (18.84)

Electric field strength (18.86)

Rate coefficient for bounceoff (18.87)

Fe =kCQ0Q1r012

Ef = Fe,0iQ0i

∑ = kCQir0i2

i∑

BIi,Jj ,m= 1−Ecoal,Ii ,Jj ,m( )KIi ,Jj ,m

Page 67: Presentation Slides for Chapter 18 of Fundamentals of Atmospheric Modeling 2 nd  Edition

LightningCharge separation rate per unit volume of air (18.88)

Overall charge separation rate (18.91)

dQb,mdt = BIi,Jj

υ IinIi,tnJj ,t−h +υ Jj nIi,t−hnJj ,t( )υIi +υ Jj

ΔQIi ,Jji=j

NC∑I=J

NH∑j =1

NC∑J =2

NH∑⎡

⎣ ⎢ ⎢

⎦ ⎥ ⎥ m

dQb,cdt =FcAcell

dQb,mdt Δzm

m=Ktop

Kbot∑

Page 68: Presentation Slides for Chapter 18 of Fundamentals of Atmospheric Modeling 2 nd  Edition

LightningTime-rate-of-change of the in-cloud electric field strength

(18.92)

Summed vertical thickness of layers (18.93)

Horizontal radius of cloudy region (18.94)

dE fdt = 2kC

Zc Zc2+Rc

2dQb,c

dt

Zc = Δzmm=K top

Kbot∑

Rc = FcAcell π

Page 69: Presentation Slides for Chapter 18 of Fundamentals of Atmospheric Modeling 2 nd  Edition

LightningNumber of intracloud flashes per centimeter per second

(18.95)

Number of NO molecules per cubic centimeter per second(18.96)

dFrdt = 1

ZcEth

dEfdt

ENO = El FNOAcell

dFrdt


Recommended