+ All Categories
Home > Documents > Presentation Slides for Chapter 19 of Fundamentals of Atmospheric Modeling 2 nd Edition

Presentation Slides for Chapter 19 of Fundamentals of Atmospheric Modeling 2 nd Edition

Date post: 06-Feb-2016
Category:
Upload: terri
View: 26 times
Download: 0 times
Share this document with a friend
Description:
Presentation Slides for Chapter 19 of Fundamentals of Atmospheric Modeling 2 nd Edition. Mark Z. Jacobson Department of Civil & Environmental Engineering Stanford University Stanford, CA 94305-4020 [email protected] March 31, 2005. S(IV) and S(VI) Families. S(IV) Family - PowerPoint PPT Presentation
Popular Tags:
25
Presentation Slides for Chapter 19 of Fundamentals of Atmospheric Modeling 2 nd Edition Mark Z. Jacobson partment of Civil & Environmental Engineerin Stanford University Stanford, CA 94305-4020 [email protected] March 31, 2005
Transcript
Page 1: Presentation Slides for Chapter 19 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Presentation Slides for

Chapter 19of

Fundamentals of Atmospheric Modeling 2nd Edition

Mark Z. JacobsonDepartment of Civil & Environmental Engineering

Stanford UniversityStanford, CA [email protected]

March 31, 2005

Page 2: Presentation Slides for Chapter 19 of Fundamentals of Atmospheric Modeling 2 nd  Edition

S(IV) and S(VI) Families

S

OO

O

S

HO OH

O

S

HO O

O

S

O O

S

O

OH

O OH

S

O

OH

O O

S

O

O

O O

Sulfurous acidH2SO3(aq)

Bisulfite ionHSO3

-

Sulfite ionSO3

2-

Sulfuric acidH2SO4(g,aq)

Bisulfate ionHSO4

-

Sulfate ionSO4

2-

S(IV) Family

Sulfur dioxideSO2(g,aq)

S(VI) Family Table 19.1

Page 3: Presentation Slides for Chapter 19 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Mechanisms of Converting S(IV) to S(VI)

Why is this important?It allows sulfuric acid to enter or form within cloud drops and aerosol particles, increasing their acidity

Mechanisms1. Gas-phase oxidation of SO2(g) to H2SO4(g) followed by condensation of H2SO4(g)

2. Dissolution of SO2(g) into liquid water to form H2SO3(aq) followed by aqueous chemical conversion of H2SO3(aq) and its dissociation products to H2SO4(aq) and its dissociation products.

Page 4: Presentation Slides for Chapter 19 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Gas-Phase Oxidation of S(IV)Gas-phase oxidation of sulfur dioxide to sulfuric acid (19.1)

+ OH(g), M + H2

O (g)

Sulfur

dioxide gas

Bisulfite Sulfur

trioxide

Sulfuric

acid gas

+ O2

(g)

HO2

(g)

SO2

(g) HSO3

(g) SO3

(g) H2

SO4

(g)

Condensation and dissociation of sulfuric acid (19.1)

Bisulfate ion

H2

SO4

(aq) H+

+ HSO4

-

2H+

+ SO4

2-

Sulfate ionAqueous

sulfuric acid

H2

SO4

(g)

Sulfuric

acid gas

Page 5: Presentation Slides for Chapter 19 of Fundamentals of Atmospheric Modeling 2 nd  Edition

S(IV) Dissolution/Aqueous Oxidation

Dissolution of sulfur dioxide (19.3)

Dissociation of dissolved sulfur dioxideAt pH of 2-7, most S(IV) dissociates to HSO3

- (19.4)

S O2

(g) S O2

(aq)

Dissolved

sulfur dioxide

Sulfur

dioxide gas

SO2

(aq) + H2

O(aq) H2

SO3

(aq) H+

+ HSO3

-

Dissolved

sulfur

dioxide

Liquid

water

Sulfurous

acid

Hydrogen

ion

Bisulfite

ion

2H+

+ SO3

2-

Hydrogen

ion

Sulfite

ion

Page 6: Presentation Slides for Chapter 19 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Aqueous Oxidation of S(IV)Oxidation of S(IV) by hydrogen peroxide (19.5)

If [H2O2(aq)] > [S(IV)]S(IV) is consumed within tens of minutes

If [S(IV)] > [H2O2(aq)]H2O2(aq) is consumed within minutes

SO4

2-

+ H2

O(aq) + 2H+

Bisulfite

ion

HSO3

-

+ H2

O2

(aq) + H+

Hydrogen

peroxide (aq)

Sulfate

ion

Page 7: Presentation Slides for Chapter 19 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Hydrogen Peroxide Sources/SinksSources of hydrogen peroxide (19.8, 19.9)

Sinks of hydrogen peroxide (19.6, 19.7)

H2

O2

(g) H2

O2

(aq)

Hydrogen

peroxide

Hydroperoxy

radical

HO2

(aq) + O2

-

+ H2

O(aq) H2

O2

(aq) + O2

(aq) + OH-

Peroxy

ion

Hydroxide

ion

H2

O2

(aq) + h ν 2OH(aq)

H2

O2

(aq) + OH(aq) H2

O(aq) + HO2

(aq)

Page 8: Presentation Slides for Chapter 19 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Aqueous Oxidation of S(IV)Oxidation by ozone, important when pH > 6 (19.11)

Oxidation by hydroxyl radical, important when pH ≈ 5 (19.12)

SO3

2-

+ O3

(aq) SO4

2-

+ O2

(aq)

Sulfite

ion

Dissolved

ozone

Sulfate

ion

Dissolved

oxygen

SO5

-

+ H2

O(aq)

Bisulfite

ion

Peroxysulfate

ion

HSO3

-

+ OH(aq) + O2

(aq)

Page 9: Presentation Slides for Chapter 19 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Aqueous Oxidation of S(IV)Oxidation by oxygen, catalyzed by peroxysulfate ion (19.13)

Oxidation by the peroxymonosulfate ion (19.14)

Dissolved

oxygen

Bisulfite

ion

Peroxymonosulfate

ion

HSO3

-

+ O2

(aq)

SO5

-

HSO5

-

2SO4

2-

+ 3H+

Bisulfite

ion

Sulfate

ion

HSO3

-

+ HSO5

-

+ H+

Page 10: Presentation Slides for Chapter 19 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Aqueous Oxidation of S(IV)Oxidation by oxygen, catalyzed by Fe(III)=Fe3+ (19.15)

Oxidation by oxygen, catalyzed by Mn(II) = Mn2+ (19.16)

Sulfite ion Sulfate ion

Fe(III)

SO4

2-

+ H2

O2

(aq)SO3

2-

+ H2

O(aq) + O2

(aq)

Bisulfite ion Sulfate ion

Mn(II)

SO4

2-

+ H2

O2

(aq) + H+

HSO3

-

+ H2

O(aq) + O2

(aq)

Page 11: Presentation Slides for Chapter 19 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Aqueous Oxidation of S(IV)Oxidation by formaldehyde (19.19)

Formaldehyde equilibrates with methylene glycol (19.17)

SO3

2-

+ HCHO(aq)

Sulfite

ion

Formald

-ehyde

HMSA

HOCH2

SO3

-

+ OH-

H2

C(OH)2

(aq)

Formaldehyde

HCHO(aq) + H2

O(aq)

Methylene glycol

Page 12: Presentation Slides for Chapter 19 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Aqueous Oxidation of S(IV)Oxidation by dichloride ion (19.24)

Dichloride ion equilibrates with chlorine atom,ion (19.21)

Dichloride

ion

Peroxysulfate

ion

Bisulfite

ion

HSO3

-

+ Cl2

-

+ O2

(aq) SO5

-

+ 2Cl-

+ H+

Chlorine

atom

Chloride

ion

Dichloride

ion

Cl(aq) + Cl-

Cl2

-

Page 13: Presentation Slides for Chapter 19 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Cloud Conversion of S(IV) to S(VI)

Fig. 19.1

Change in S(VI) content when SO2(g) dissolved and (a) did not and (b) did react in a cloud. The conversion took < 10 minutes

0

5

10

15

20

25

30

35

40

0 0.5 1 1.5 2

Summed concentration (

μ

g μ

-3

)

Tiμe froμ start (h)

H

2

O 0.0001 (a aνd b)

SO

4

2-

(a)

HSO

4

-

(b)

HSO

3

-

(b)

HSO

4

-

(a)

SO

4

2-

(b)

×

Sum

med

con

cent

ratio

ns (μ

g m

-3)

Page 14: Presentation Slides for Chapter 19 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Diffusion Within a DropCharacteristic time for aqueous diffusion in cloud drop (19.25)

Example 19.1:di = 30 μm

---> tad,q = 0.011 sdi = 10 μm

---> tad,q = 0.0013 s

Reaction times for O3(aq), NO3(aq), OH(aq), Cl(aq), SO4- CO3

-, and Cl2- are shorter than are diffusion transport times

τad,q = ri2

π2Daq,q

Page 15: Presentation Slides for Chapter 19 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Diffusion Within a DropTime rate of change of concentration of species q in size bin i as a function

of radius during diffusion (19.26)

Boundary condition At drop center, ∂cq,i,r/ ∂ r = 0

dcq,i,rdt

⎛ ⎝ ⎜ ⎞

⎠ ⎟ ad,aq

=Daq,q1r2

∂∂r r2

∂cq,i,r∂r

⎛ ⎝ ⎜

⎞ ⎠ ⎟ +Pc,q,i,r −Lc,q,i,r

Page 16: Presentation Slides for Chapter 19 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Aqueous Chemistry With GrowthAqueous reactions stiffer than gas reactionsAqueous reactions solved in more size bins than gas reactionsAqueous concentrations coupled to growth and equilibrium --> Either time split aqueous chemistry from other processes with a small splitting time step or solve aqueous chemistry together with other processes

Change in aerosol composition (19.27)

Corresponding conservation of gas equation (19.28)

dcq,i,tdt

⎛ ⎝ ⎜ ⎞

⎠ ⎟ ge,eq,aq

=dcq,i,t

dt⎛ ⎝ ⎜ ⎞

⎠ ⎟ ge

+dcq,i,t

dt⎛ ⎝ ⎜ ⎞

⎠ ⎟ eq

+dcq,i,t

dt⎛ ⎝ ⎜ ⎞

⎠ ⎟ aq

dCq,tdt =−

dcq,i,tdt

⎛ ⎝ ⎜ ⎞

⎠ ⎟ gei=1

NB∑

Page 17: Presentation Slides for Chapter 19 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Aqueous Chemistry Families

(19.29)-(19.35)

cS IV( ),i =cSO2 aq( ),i +cHSO3−,i +cSO32−,icS VI( ),i =cH2SO4 aq( ),i +cHSO4−,i +cSO42−,i

cHO2,T ,i =cHO2 aq( ),i +cO2−,icCO2,T ,i =cCO2 aq( ),i +cHCO3−,i +cCO32−,i

Used for one type of numerical solution to aqueous chemistry

cHCHOT ,i =cHCHOaq( ),i +cH2C OH( )2,icHCOOHT ,i =cHCOOH aq( ),i +cHCOO- ,i

cCH3COOHT ,i =cCH3COOH aq( ),i +cCH3COO-,i

Page 18: Presentation Slides for Chapter 19 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Growth/Aqueous Chemistry ODEsChange in S(IV) due to aqueous chemistry (19.43)

Chemical production and loss terms (19.45)

Gas conservation equation (19.53)

dcS IV( ),i,tdt =kS IV( ),i,t−h CSO2 g( ),t − ′ S S IV( ),i,t−h

cS IV( ),i,t′ H S IV( ),i,t−h

⎛ ⎝ ⎜ ⎜

⎞ ⎠ ⎟ ⎟

+Pc,S IV( ),i,t −Lc,S IV( ),i,t

Pc,q,i,t = Rc,nP (l,q),tl=1

Nprod,q∑ Lc,q,i,t = Rc,nL (l,q),t

l=1

Nloss,q∑

dCSO2 g( ),tdt =− kS IV( ),i,t−h CSO2 g( ),t − ′ S S IV( ),i,t−h

cS IV( ),i,t′ H S IV( ),i,t−h

⎡ ⎣ ⎢ ⎢

⎤ ⎦ ⎥ ⎥ i=1

NB∑

Page 19: Presentation Slides for Chapter 19 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Growth/Aqueous Chemistry ODEsDimensionless effective Henry’s constant (19.44)

Dimensionless Henry’s constant (19.37)

′ H S IV( ),i,t−h = ′ H SO2 aq( ),icS IV( ),i,t

cSO2 aq( ),i,t

=mvcw,i,t−hR*THSO2 1+K1,S IV( )mH+,i,t−h

+K1,S IV( )K2,S IV( )

mH+,i,t−h2

⎜ ⎜ ⎜

⎟ ⎟ ⎟

′ H SO2 aq( ),i =mvcwR*THSO2

Page 20: Presentation Slides for Chapter 19 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Growth/Aqueous Chemistry ODEsRatio of S(IV) to SO2(aq) (19.38)

First and second dissociation constants of S(IV) (19.39)

(19.40)

cS IV( ),i,tcSO2 aq( ),i,t

= 1+K1,S IV( )mH+,i,t−h

+K1,S IV( )K2,S IV( )

mH+,i,t−h2

⎜ ⎜ ⎜

⎟ ⎟ ⎟

K1,S IV( ) =mH+,imHSO3−,iγi,H+ HSO3−

2

mSO2 aq( ),i

K2,S IV( ) =mH+,imSO32−,iγi,H+ SO32−

2

mHSO3−,iγi,H+ HSO3−2

Page 21: Presentation Slides for Chapter 19 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Chemical Loss TermConsider aqueous reactions of family (19.46 - 7)

S IV( )+H2O2 aq( )+H+ ⏐ → ⏐ S VI( )+2H++H2O aq( )

S IV( )+HO2,T ⏐ → ⏐ S VI( )+OH aq( )+2H+

HSO3−+H2O2 aq( ) +H+

HSO3−+HO2 aq( )SO32−+HO2 aq( )

HSO3−+O2−

SO32−+O2−

These represent individual aqueous reactions (19.48-52)

Page 22: Presentation Slides for Chapter 19 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Chemical Loss Termand their equilibrium partitioning (19.53-4)

SO2 aq( )+H2O aq( )⇔ H++HSO3−⇔ 2H++SO32−

HO2 aq( ) ⇔ H++O2−

Page 23: Presentation Slides for Chapter 19 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Chemical Loss TermFamily loss rate (19.55)

Rate coefficient for S(VI)+H2O2(aq)+H+ (19.56)

Mole fraction of S(IV) partitioned to HSO4- (19.57)

Lc,S IV( ),i,t =kacS IV( ),i,tcH2O2,i,tcH+,i,t +kbcS IV( ),i,tcHO2,T ,i,t

ka =ka,1α1,S IV( )

α1,S IV( ) =mH+,i,t−hK1,S IV( )

mH+,i,t−h2 +mH+,i,t−hK1,S IV( ) +K1,S IV( )K2,S IV( )

Page 24: Presentation Slides for Chapter 19 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Chemical Loss TermRate coefficient for S(VI)+HO2(aq) (19.58)

Mole fraction of S(IV) partitioned to SO42- (19.59)

Mole fraction of HO2,T partitioned to HO2(aq) and O2- (19.60-1)

kb = kb,1α1,S IV( ) +kb,2α2,S IV( )[ ]α0,HO2,T+kb,3α1,S IV( ) +kb,4α2,S IV( )[ ]α1,HO2,T

α2,S IV( ) =K1,S IV( )K2,S IV( )

mH+,i,t−h2 +mH+,i,t−hK1,S IV( ) +K1,S IV( )K2,S IV( )

α1,HO2,T =K1,HO2,T

mH+,i,t−h +K1,HO2,T

α0,HO2,T = mH+,i,t−hmH+,i,t−h +K1,HO2,T

Page 25: Presentation Slides for Chapter 19 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Table 19.2

Dissolution/chemistry of 10 gases to 16 size bins, 11 species per bin.

Effect of Sparse-Matrix Reductions When Solving Growth/Aqueous ODEs

Without With Quantity Reductions ReductionsOrder of matrix 186 186Initial fill-in 34,596 1226Final fill-in 34,596 2164 Decomp. 1 2,127,685 6333Decomp. 2 17,205 1005Backsub. 1 17,205 1005 Backsub. 2 17,205 973


Recommended