+ All Categories
Home > Documents > Presentation Slides for Chapter 13 of Fundamentals of Atmospheric Modeling 2 nd Edition

Presentation Slides for Chapter 13 of Fundamentals of Atmospheric Modeling 2 nd Edition

Date post: 16-Mar-2016
Category:
Upload: haley
View: 33 times
Download: 0 times
Share this document with a friend
Description:
Presentation Slides for Chapter 13 of Fundamentals of Atmospheric Modeling 2 nd Edition. Mark Z. Jacobson Department of Civil & Environmental Engineering Stanford University Stanford, CA 94305-4020 [email protected] March 29, 2005. Sizes of Atmospheric Constituents. - PowerPoint PPT Presentation
40
Presentation Slides for Chapter 13 of Fundamentals of Atmospheric Modeling 2 nd Edition Mark Z. Jacobson partment of Civil & Environmental Engineerin Stanford University Stanford, CA 94305-4020 [email protected] March 29, 2005
Transcript
Page 1: Presentation Slides for Chapter 13 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Presentation Slides for

Chapter 13of

Fundamentals of Atmospheric Modeling 2nd Edition

Mark Z. JacobsonDepartment of Civil & Environmental Engineering

Stanford UniversityStanford, CA [email protected]

March 29, 2005

Page 2: Presentation Slides for Chapter 13 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Sizes of Atmospheric Constituents

Table 13.1

Mode Diameter (m) Number (#/cm3)Gas molecules 0.0005 2.45x1019

Aerosol particlesSmall < 0.2 103-106

Medium 0.2-2 1-104

Large 1-100 <1 - 10Hydrometeor particles

Fog drops 10-20 1-1000Cloud drops 10-200 1-1000Drizzle 200-1000 0.01-1Raindrops 1000-8000 0.001-0.01

Page 3: Presentation Slides for Chapter 13 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Particles and Size DistributionsParticle

Agglomerations of molecules in the liquid and / or solid phases, suspended in air. Includes aerosol particles, fog drops, cloud drops, and raindrops

Example 13.1. - Idealized particle size distribution10,000 particles of radius between 0.05 and 0.5 m100 particles of radius between 0.5 and 5.0 m10 particles of radius between 5.0 and 50 m

Example 13.2. Number of size bins needs to be limited105 grid cells100 size bins 100 components per size bin --> 109 words = 8 gigabytes to store concentration

Page 4: Presentation Slides for Chapter 13 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Volume Ratio Size StructureVolume of particles in one size bin (13.1)

(13.2)

Volume-diameter relationship for spherical particles

υi =Vratυi −1

υi =υ1Vrati−1

υi =πdi3 6

Page 5: Presentation Slides for Chapter 13 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Volume Ratio Size Structure

Fig. 13.1

Variation in particle sizes with the volume ratio size structure

υ1 Vrat x υ 1 Vrat x υ 2 Vrat x υ i-1

i=1 i=2 i=3 i

Page 6: Presentation Slides for Chapter 13 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Volume Ratio Size StructureVolume ratio of adjacent size bins (13.3)

Example 13.3. d1 = 0.01 m

= 1000 m

NB = 30 size bins

---> Vrat = 3.29

Vrat =υNBυ1

⎛ ⎝ ⎜

⎞ ⎠ ⎟ 1 NB−1( )

=dNBd1

⎛ ⎝ ⎜

⎞ ⎠ ⎟ 3 NB−1( )

dNB

Page 7: Presentation Slides for Chapter 13 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Volume Ratio Size StructureNumber of size bins (13.4)

Example 13.4. d1 = 0.01 m

= 1000 m

Vrat = 4

---> NB = 26 size bins Vrat = 2

---> NB = 51 size bins

NB =1+ln dNB d1( )

3⎡ ⎣ ⎢

⎤ ⎦ ⎥

lnVrat

dNB

Page 8: Presentation Slides for Chapter 13 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Volume Ratio Size StructureAverage volume in a size bin (13.5)

Relationship between high- and low-edge volume (13.6)

Substitute (13.6) into (13.5) --> low edge volume (13.7)

υi =12 υi,hi +υi,lo( )

υi,hi =Vratυi,lo

υi,lo = 2υi1+Vrat

Page 9: Presentation Slides for Chapter 13 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Volume Ratio Size StructureVolume width of a size bin (13.8)

Diameter width of a size bin (13.9)

Δυi =υi,hi −υi,lo = 2υi+11+Vrat

− 2υi1+Vrat

=2υi Vrat−1( )1+Vrat

Δdi =di,hi −di,lo = 6π

⎛ ⎝ ⎜ ⎞

⎠ ⎟ 13

υi,hi13 −υi,lo

13( )=di213 Vrat13−1

1+Vrat( )13

Page 10: Presentation Slides for Chapter 13 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Particle ConcentrationsNumber concentration in a size bin (13.10)

Volume concentration in a size bin (13.12)

Number concentration in a size distribution (13.11)

Surface area concentration in a size bin (13.13)

ni = viυi

ND = nii=1

NB∑

vi = vq,iq=1

NV∑

ai =ni 4πri2 =niπdi2

Page 11: Presentation Slides for Chapter 13 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Particle ConcentrationsMass concentration in a size bin (13.14)

Volume-averaged mass density (g cm-3) of particle of size i (13.15)

mi = mq,iq=1

NV∑ =cm ρqvq,iq=1

NV∑ =cmρp,i vq,iq=1

NV∑ =cmρp,ivi

ρp,i =vi,qρq( )

q=1

NV∑

vi,qq=1

NV∑

Page 12: Presentation Slides for Chapter 13 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Particle ConcentrationsExample 13.5

= 3.0 g m-3 for water

---> = 5.0 g m-3

---> = 4.09 x 10-12 cm3 cm-3

---> = 6.54 x 10-14 cm3

---> = 62.5 partic. cm-3

---> = 4.8 x 10-7 cm2 cm-3

= 2.0 g m-3 for sulfatedi = 0.5 m = 1.0 g cm-3 for water = 1.83 g cm-3 for sulfate

---> = 3 x 10-12 cm3 cm-3 for water---> = 1.09 x 10-12 cm3 cm-3 for sulfate

mq,imq,i

ρqρqvq,ivq,imiviυiniai

Page 13: Presentation Slides for Chapter 13 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Lognormal DistributionBell-curve distribution on a log scale

Geometric mean diameter50% of area under a lognormal curve lies below it

Geometric standard deviation68% of area under a lognormal curve lies between +/-1 one geometric standard deviation around the mean diameter

Page 14: Presentation Slides for Chapter 13 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Lognormal Distribution

Fig. 13.2a

10

-3

10

-2

10

-1

10

0

10

1

10

2

0.001 0.01 0.1 1

dv (

3

c

-3

) / d log

10

D

p

Particle diaeter (D

p

, )

D

2

D

1dv (

m3 c

m-3) /

d lo

g 10 D

p

Describes particle concentration versus size

Page 15: Presentation Slides for Chapter 13 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Lognormal Distribution

Fig. 13.2b

The lognormal curve drawn on a linear scale

10

-3

10

-2

10

-1

10

0

10

1

10

2

0 0.05 0.1 0.15

dv (

3

c

-3

) / d log

10

D

p

Particle diaeter (D

p

, )

dv (

m3 c

m-3) /

d lo

g 10 D

p

Page 16: Presentation Slides for Chapter 13 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Lognormal Parameters From DataLow-pressure impactor -- 7 size cuts

0.05 - 0.075 m 0.5 - 1.0 m

0.075 - 0.12 m 1.0 - 2.0 m

0.12 - 0.26 m 2.0- 4.0 m0.26 - 0.5 m

Page 17: Presentation Slides for Chapter 13 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Lognormal Parameters From DataNatural log of geometric mean mass diameter (13.16)

lnD M = 1ML

mj lndj( )j=1

7∑

Total mass concentration of particles (g m-3)

ML = mjj =1

7∑

Page 18: Presentation Slides for Chapter 13 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Lognormal Parameters From Data

Natural log of geometric mean volume diameter (13.17)

Total volume concentration of particles (cm3 cm-3)

lnD V = 1VL

vj lndj( )j =1

7∑

VL = vjj =1

7∑ vj =

mjcmρj

Page 19: Presentation Slides for Chapter 13 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Lognormal Parameters From Data

Natural log of geometric mean area diameter (13.18)

Total area concentration of particles (cm2 cm-3)

lnD A = 1AL

aj lndj( )j=1

7∑

A L = a jj=1

7∑ a j =

3mjcmρj rj

Page 20: Presentation Slides for Chapter 13 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Lognormal Parameters From DataNatural log of geometric mean number diameter (13.19)

lnD N = 1NL

nj lndj( )j=1

7∑

Total number concentration of particles (partic. cm-3)

N L = njj=1

7∑ nj =

mjcmρj υ j

Page 21: Presentation Slides for Chapter 13 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Lognormal Parameters From Data

Natural log of geometric standard deviation (13.20)

lnσg = 1ML

mjln2 djD M

⎛ ⎝ ⎜

⎞ ⎠ ⎟

j =1

7∑ = 1

VLvj ln2 dj

D V

⎛ ⎝ ⎜

⎞ ⎠ ⎟

j =1

7∑

= 1A L

aj ln2 djD A

⎛ ⎝ ⎜

⎞ ⎠ ⎟

j=1

7∑ = 1

N Lnjln2 dj

D N

⎛ ⎝ ⎜

⎞ ⎠ ⎟

j=1

7∑

Page 22: Presentation Slides for Chapter 13 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Redistribute With Lognormal ParameterRedistribute mass concentration in model size bin (13.21)

Redistribute volume concentration (13.22)

Redistribute area concentration (13.23)

mi = MLΔdidi 2π lnσg

exp−ln2 di D M( )

2ln2σg

⎣ ⎢ ⎢

⎦ ⎥ ⎥

vi = VLΔdidi 2π lnσg

exp−ln2 di D V( )

2ln2σg

⎣ ⎢ ⎢

⎦ ⎥ ⎥

ai = ALΔdidi 2π lnσg

exp−ln2 di D A( )

2ln2σg

⎣ ⎢ ⎢

⎦ ⎥ ⎥

Page 23: Presentation Slides for Chapter 13 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Redistribute With Lognormal ParameterRedistribute number concentration (13.24)

Exact volume concentration in a mode (13.25)

ni = NLΔdidi 2π lnσg

exp−ln2 di D N( )

2ln2σg

⎣ ⎢ ⎢

⎦ ⎥ ⎥

VL = vddd0

∞∫ =π

6 ndd3dd0

∞∫ =π

6 D N3 exp 9

2 ln2σg⎛ ⎝ ⎜ ⎞

⎠ ⎟ N L

Page 24: Presentation Slides for Chapter 13 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Lognormal Modes

Fig. 13.3

Number (partic. cm-3), area (cm2 cm-3), and volume (cm3 cm-3) concentrations distributed lognormally

10

-3

10

-1

10

1

10

3

10

5

0.001 0.01 0.1 1

dx/d log

10

D

p

(x=n, a, v)

Particle diameter (D

p

, )

D

V

D

N

D

An

v

a

dx /

d lo

g 10 D

p (x

=n,a

,v)

Page 25: Presentation Slides for Chapter 13 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Lognormal Param. for Cont. Particles

Table 13.2

Nucleation Accumulation CoarseParameter Mode Mode Modeg 1.7 2.03 2.15NL (particles cm-3) 7.7x104 1.3x104 4.2DN (m) 0.013 0.069 0.97AL (m2 cm-3) 74 535 41DA (m) 0.023 0.19 3.1VL (m3 cm-3) 0.33 22 29DV (m) 0.031 0.31 5.7

Page 26: Presentation Slides for Chapter 13 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Quadramodal Size DistributionSize distribution at Claremont, California, on the morning of August 27,

1987

Fig. 13.4

10

-1

10

0

10

1

10

2

10

3

10

4

10

5

10

6

0

50

100

150

200

250

300

0.01 0.1 1 10

Particle diameter (D

p

, )

dn (No. c

-3

)

/dlog

10

D

p

da (

2

c

-3

)/d log

10

D

p

dv (

3

c

-3

)

/d log

10

D

p

Page 27: Presentation Slides for Chapter 13 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Marshall-Palmer DistributionRaindrop number concentration between di and di+Ddi (13.30)

Ddin0 = value of ni at di = 0n0 = 8.0 x 10-6 partic. cm-3 m-1

lr = .1x10-3 R-0.21 m-1

R = rainfall rate (1-25 mm hr-1)

Total number concentration and liquid water content

ni =Δdin0e−λrdi

nT =n0 λr wL =10−6ρwπn0 λr4

Page 28: Presentation Slides for Chapter 13 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Marshall-Palmer DistributionExample 13.6.

R = 5 mm hr-1

di = 1 mm

di+Ddi = 2 mm

---> ni = 0.00043 partic. cm-3

---> nT = 0.0027 partic. cm -3

---> wL = 0.34 g m-3

Page 29: Presentation Slides for Chapter 13 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Modified Gamma DistributionNumber concentration (partic. cm-3) of drops in size bin i (13.30)

ni =Δri Agriαg exp−

αgγg

rirc,g

⎛ ⎝ ⎜ ⎜

⎞ ⎠ ⎟ ⎟

γg⎡

⎣ ⎢ ⎢

⎦ ⎥ ⎥

Page 30: Presentation Slides for Chapter 13 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Modified Gamma Distribution Parameters

Table 13.3

Cloud Type Ag

ag

gg

rcg

()

LiqυidWaterConten

t(g -3)

Nυb erConc.(partic.c -3)

Stratocυυlυ bae 0.2823 5.0 1.19 5.33 0.11 100

Stratocυυlυ top 0.19779 2.0 2.6 10.19 0.796 100

Stratυ bae 0.97923 5.0 1.05 .70 0.11 100

Stratυ top 0.38180 3.0 1.3 6.75 0.379 100

Ni botratυ bae 0.08061 5.0 1.2 6.1 0.235 100

Ni botratυ top 1.0969 1.0 2.1 9.67 1.03 100

Cυυlυ congetυ 0.581 .0 1.0 6.0 0.297 100

Light rain .97x10-8 2.0 0.5 70.0 1.17 0.01

Page 31: Presentation Slides for Chapter 13 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Modified Gamma DistributionExample 13.7.

Find number concentration of droplets between 14 and 16 m in radius at base of a stratus cloud

---> ri = 15 m---> Dri = 2 m---> ni = 0.1506 partic. cm-3

Page 32: Presentation Slides for Chapter 13 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Full-Stationary Size StructureAverage single-particle volume in size bin (υi) stays constant. When growth occurs, number concentration

in bin (ni) changes.

Advantages:• Covers wide range in diameter space with few bins• Nucleation, emissions, transport treated realistically

Disadvantages:• When growth occurs, information about the original composition of the growing particle is lost.• Growth leads to numerical diffusion

Page 33: Presentation Slides for Chapter 13 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Full-Stationary Size StructureDemonstration of a problem with the full-stationary size bin structure

Fig. 13.5

Page 34: Presentation Slides for Chapter 13 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Full-Moving StructureNumber concentration (ni) of particles in a size bin does not change during growth; instead, single-particle

volume (υi) changes.

Advantages:• Core volume preserved during growth• No numerical diffusion during growth

Disadvantages:• Nucleation, emissions, transport treated unrealistically• Reordering of size bins required for coagulation

Page 35: Presentation Slides for Chapter 13 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Full-Moving StructurePreservation of aerosol material upon growth and evaporation in a moving

structure

Fig. 13.6

Page 36: Presentation Slides for Chapter 13 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Full-Moving StructureParticle size bin reordering for coagulation

Fig. 13.7

A

B

Page 37: Presentation Slides for Chapter 13 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Quasistationary StructureSingle-particle volumes change during growth like with full-moving structure but are fit back onto a

full-stationary grid each time step.

Advantages and Disadvantages:• Similar to those of full stationary structure• Very numerically diffusive

Page 38: Presentation Slides for Chapter 13 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Quasistationary Structure

Partition volume of i between bins j and k while conserving particle number concentration(13.32)

and particle volume concentration (13.33)

Solution to this set of two equations and two unknowns (13.34)

ni =Δnj +Δnk

ni ′ υ i =Δnj υ j +Δnkυk

Δnj =niυk − ′ υ iυk −υ j

Δnk =ni′ υ i −υ j

υk −υ j

After growth, particles in bin i have volume υi’, which lies between volumes of bins j and k

υ j ≤ ′ υ i <υk

Page 39: Presentation Slides for Chapter 13 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Moving-Center StructureSingle-particle volume (υi) varies between υi,hi and υi,lo during growth, but υi,hi, υi,lo, and dυi

remain fixed.

Advantages:• Covers wide range in diameter space with few bins• Little numerical diffusion during growth• Nucleation, emission, transport treated realistically

Disadvantages:• When growth occurs, information about the original composition of the growing particle is lost

Page 40: Presentation Slides for Chapter 13 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Moving-Center StructureComparison of moving-center, full-moving, and quasistationary size structures

during water growth onto aerosol particles to form cloud drops.

Fig. 13.8

10

-1

10

1

10

3

10

5

10

7

0.1 1 10 100

dv (

3

c

-3

) /d log

10

D

p

Particle diaeter (D

p

, )

Initial

Fυll-oving

Qυai-

tationary

Moving-center

dv (

m3 c

m-3) /

d lo

g 10 D

p


Recommended