+ All Categories
Home > Documents > Presentation Slides for Chapter 15 of Fundamentals of Atmospheric Modeling 2 nd Edition

Presentation Slides for Chapter 15 of Fundamentals of Atmospheric Modeling 2 nd Edition

Date post: 14-Jan-2016
Category:
Upload: lou
View: 26 times
Download: 0 times
Share this document with a friend
Description:
Presentation Slides for Chapter 15 of Fundamentals of Atmospheric Modeling 2 nd Edition. Mark Z. Jacobson Department of Civil & Environmental Engineering Stanford University Stanford, CA 94305-4020 [email protected] March 30, 2005. Coagulation. - PowerPoint PPT Presentation
Popular Tags:
49
Presentation Slides for Chapter 15 of Fundamentals of Atmospheric Modeling 2 nd Edition Mark Z. Jacobson partment of Civil & Environmental Engineerin Stanford University Stanford, CA 94305-4020 [email protected] March 30, 2005
Transcript
Page 1: Presentation Slides for Chapter 15 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Presentation Slides for

Chapter 15of

Fundamentals of Atmospheric Modeling 2nd Edition

Mark Z. JacobsonDepartment of Civil & Environmental Engineering

Stanford UniversityStanford, CA [email protected]

March 30, 2005

Page 2: Presentation Slides for Chapter 15 of Fundamentals of Atmospheric Modeling 2 nd  Edition

CoagulationProcess by which particles collide and stick together

Integro-differential coagulation equation (15.1)

∂nυ∂t

=12

βυ−υ ,υ nυ−υ nυ dυ 0

υ

∫ −nυ βυ,υ nυ dυ 0

Page 3: Presentation Slides for Chapter 15 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Monomer Size Distribution

Fig. 15.1

υ1 2 x υ 1 3 x υ 1 4 x υ 1

k=1 k=2 k=3 k=4

Page 4: Presentation Slides for Chapter 15 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Coagulation Over Monomer Distribution

Coagulation equation over monomer size distribution (15.2)

Rewrite in fully implicit finite-difference form (15.3)

ΔnkΔt

=12

βk−j, j nk−j njj=1

k−1

∑ −nk βk, jnjj =1

nk,t −nk,t−hh

=12

Pk, jj=1

k−1

∑ − Lk, jj =1

Page 5: Presentation Slides for Chapter 15 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Coagulation Over Monomer Distribution

Production rate (15.4)

Loss rate

Rearrange (15.3) (15.5)

Pk,j =βk−j, jnk−j,tnj,t

Lk,j =βk, jnk,tnj,t Pk,j =Lk−j, j

nk,t =nk,t−h+12

h βk−j, jnk−j,tnj,tj =1

k−1

∑ −h βk,j nk,tnj,tj=1

-->

Finite-difference form (15.3)

nk,t −nk,t−hh

=12

Pk, jj=1

k−1

∑ − Lk, jj =1

Page 6: Presentation Slides for Chapter 15 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Semiimplicit Solution Over Monomer Size Distribution

Write loss rate in semi-implicit form (15.6)

Substitute (15.6) into (15.3) (15.7)

Rearrange --> semiimplicit solution (15.8) Treats number correctly but does not conserve volume

Lk,j =βk, jnk,tnj,t−h

nk,t =nk,t−h+12

h βk−j, jnk−j,tnj,t−hj =1

k−1

∑ −h βk, j nk,tnj,t−hj=1

nk,t =

nk,t−h+12

h βk−j, jnk−j,tnj,t−hj =1

k−1

1+h βk,j nj,t−hj =1

Lk,j =βk, jnk,tnj,t -->

Page 7: Presentation Slides for Chapter 15 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Semiimplicit Solution Over Monomer Size Distribution

Revise to conserve volume, giving up error in number (15.9)

where vk,t=υknk,t

vk,t =

vk,t−h+h βk−j,j vk−j,tnj,t−hj=1

k−1

1+h βk,j nj,t−hj=1

Page 8: Presentation Slides for Chapter 15 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Semiimplicit Solution Over Arbitrary Size Distribution

Volume of intermediate particle (15.10)

Volume fraction of Vi,j partitioned to each model bin k (15.11)

Vi,j =υi +υ j

fi, j,k =

υk+1−Vi,jυk+1−υk

⎝ ⎜

⎠ ⎟

υkVi, j

υk ≤Vi, j <υk+1 k <NB

1−fi,j,k−1 υk-1<Vi, j <υk k >1

1 Vi, j ≥υk k =NB

0 all othercases

⎪ ⎪ ⎪

⎪ ⎪ ⎪

Page 9: Presentation Slides for Chapter 15 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Semiimplicit Solution Over Arbitrary Size Distribution

Incorporate fractions into (15.9) (15.12)

vk,t =

vk,t−h +h fi, j,kβi, jvi,tnj,t−hi=1

k−1

∑⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟

j=1

k

1+h 1− fk,j,k( )βk,j nj,t−hj=1

NB

Page 10: Presentation Slides for Chapter 15 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Semiimplicit Solution Over Arbitrary Size Distribution

Final particle number concentration (15.13)

Semiimplicit solution for volume concentrationwhen multiple components (15.14)

nk,t =vk,tυk

vq,k,t =

vq,k,t−h +h fi, j,kβi, j vq,i,tnj,t−hi=1

k−1

∑⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟

j=1

k

1+h 1−fk, j,k( )βk,j nj,t−h[ ]j=1

NB

Page 11: Presentation Slides for Chapter 15 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Smoluchowski’s (1918) Solution

Assumes initial monodisperse size distribution, a monomer size distribution during evolution, and a constant rate coefficient

(15.15)

Coagulation kernel (rate coefficient) (15.16)

nk,t =nT,t−h 0.5hβnT,t−h( )

k−1

1+0.5hβnT,t−h( )k+1

β =8kBT3ηa

Page 12: Presentation Slides for Chapter 15 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Smoluchowski’s (1918) Solution

Fig. 15.2

Comparison of Smoluchowski's solution, an integrated solution, and three semi-implicit solutions

10

0

10

2

10

4

10

6

10

8 Initial

Smol.

Integrated

SI (1.2)

SI (1.5)

SI (2.0)

0.01 0.1

dn (No. cm

-3

) /d log

10

D

p

Particle diameter (D

p

, μ )m

dn (

No.

cm

-3)

/ d lo

g 10D

p

Page 13: Presentation Slides for Chapter 15 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Self-Preserving Solution

Self-preserving size distribution (15.17)

Solution to coagulation over self-preserving distribution (15.18)

ni,t−h =nT,t−hΔυi

υpexp −

υiυp

⎝ ⎜ ⎜

⎠ ⎟ ⎟

ni,t =nT,t−hΔυi υp

1+0.5hβnT,t−h( )2 exp −

υi υp1+0.5hβnT,t−h

⎝ ⎜

⎠ ⎟

Page 14: Presentation Slides for Chapter 15 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Self-Preserving Solution

Fig. 15.3

Self-preserving versus semi-implicit solutions

10

0

10

2

10

4

10

6

0.01 0.1 1

Initial

Analytical

SI (1.5)

SI (2)

dn (No. cm

-3

) /d log

10

D

p

Particle diameter (D

p

, μ )m

dn (

No.

cm

-3)

/ d lo

g 10D

p

Page 15: Presentation Slides for Chapter 15 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Coagulation Over Multiple Structures

Fig. 15.4

Internal mixing among three externally-mixed distributions

A

B

C

AB = A+B = A+AB = B+AB

AC = A+C = A+AC = C+AC

BC = B+C = B+BC = C+BC

= A+B+C = AB+BC = A+BC = AC+BC = B+AC = AC+ABABC = C+AB = AB+ABC = A+ABC = AC+ABC = B+ABC = BC+ABC = C+ABC = ABC+ABC

Page 16: Presentation Slides for Chapter 15 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Coagulation Over Multiple StructuresVolume concentration of component q in bin k of distribution N

(15.19)

Tq,Nk,t,1 = PN,M nMj,t−h fNi,Mj,Nk,t−hβNi,Mj,t−hvq,Ni,ti =1

k−1

∑⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟

j =1

k

∑⎡

⎢ ⎢

⎥ ⎥

M=1

NT

Tq,Nk,t,2 = QI,M,N nMj,t−h fIi,Mj,Nk,t−hβIi,Mj,t−hvq,Ii ,ti=1

k

∑⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟

j =1

k

∑⎡

⎢ ⎢

⎥ ⎥

I=1

NT

∑M=1

NT

Tq,Nk,t,3= 1−LN,M( ) 1−fNk,Mj,Nk,t−h( )+LN,M[ ]βNk,Mj,t−hnMj,t−hM=1

NT

∑⎡

⎣ ⎢ ⎢

⎦ ⎥ ⎥ j=1

NB

vq,Nk,t =vq,Nk,t−h +h Tq,Nk,t,1+Tq,Nk,t,2( )

1+hTq,Nk,t,3

NT = number of distributions NB = number of size bins

Page 17: Presentation Slides for Chapter 15 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Coagulation Over Multiple Structures

Total volume concentration in bin k of distribution N (15.21)

Number concentration in bin k of distribution N (15.22)

vNk,t = vq,Nk,tq=1

NV

nNk,t =vNk,tυNk

Page 18: Presentation Slides for Chapter 15 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Coagulation Over Multiple Structures

Volume fraction of coagulated pair

VIi,Mj =υ Ii +υMj

fIi ,Mj,Nk =

υNk+1−VIi,Mj,t−hυNk+1−υNk,t−h

⎝ ⎜

⎠ ⎟

υNkVIi ,Mj

υNk ≤VIi ,Mj <υNk+1 k<NB

1−fIi ,Mj,Nk−1 υNk-1 <VIi ,Mj <υNk k>1

1 VIi,Mj ≥υNk k =NB

0 all othercases

⎪ ⎪ ⎪

⎪ ⎪ ⎪

partitioned into bin k of distribution N (15.20)

Page 19: Presentation Slides for Chapter 15 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Coagulation Over Multiple Structures

Fig. 15.5

10

-6

10

-4

10

-2

10

0

10

2

10

4

10

6

0.01 0.1 1 10 100

A (Spray)

B (Soil)

D (Sulf)

E1 (BC<5% shell)

F (OM)

dn (No. cm

-3

) / d log

10

D

p

Particle diameter (D

p

, μ )m

Number concentration

of each distribution

dn (

No.

cm

-3)

/ d lo

g 10D

p

Page 20: Presentation Slides for Chapter 15 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Coagulation Over Multiple Structures

Fig. 15.5

10

-6

10

-4

10

-2

10

0

10

2

10

4

0.01 0.1 1 10 100

Initial

12 hr

dn (No. cm

-3

) / d log

10

D

p

Particle diameter (D

p

, μ )m

Number concentration

summed over all distributions

dn (

No.

cm

-3)

/ d lo

g 10D

p

Page 21: Presentation Slides for Chapter 15 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Coagulation Over Multiple Structures

Fig. 15.510

-6

10

-4

10

-2

10

0

10

2

10

4

10

6

10

8

10

10

0.01 0.1 1 10 100

A (Spray)

B (Soil)

D (Sulf)

E1 (BC<5% shell)

F (OM)

AB (Spray-soil)

AD (Spray-sulf)

AE (Spray-BC)

AF (Spray-OM)

BD (Soil-sulf)

BE (Soil-BC)

BF (Soil-OM)

DE (Sulf-BC)

DF (Sulf-OM)

EF (BC-OM)

MX

dn (No. cm

-3

) / d log

10

D

p

Particle diameter (D

p

, μ )m

Number concentration

of each distribution

dn (

No.

cm

-3)

/ d lo

g 10D

p

Page 22: Presentation Slides for Chapter 15 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Particle Flow RegimesKnudsen number for air (15.23)

Mean free path of an air molecule (15.24)

Thermal speed of an air molecule (15.25)

Particle Reynolds number (15.26)

Kna,i =λari

λa =2ηaρav a

=2νav a

v a =8kBTπM

Rei =2riVf,i νa

Page 23: Presentation Slides for Chapter 15 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Particle Flow Regimes

Fig. 15.6

T = 292 K, pa = 999 hPa, and p = 1.0 g cm-3

10

-11

10

-7

10

-3

10

1

10

5

0.01 0.1 1 10 100 1000

Particle Diameter ( μ )m

Knudsen

number

. (Diffusion coef cm

2

s

-1

)

Reynolds

number

Page 24: Presentation Slides for Chapter 15 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Particle Flow RegimesContinuum regime

Kna,i« 1 --> ri » a and particle resistance to motion is due to viscosity of the air.

Free molecular regime Kna,i » 10 --> ri « a and particle resistance to motion is due to inertia of air molecules hit by particles.

Example 15.2 T = 288 K ri = 0.1 μm

---> va = 4.59 x 104 cm s-1 ---> a = 1.79 x 10-4 g cm-1 s-1

---> a = 0.00123 g cm-3

---> a = 6.34 x 10-6 cm---> Kna,i = 0.63 --> continuum regime

Page 25: Presentation Slides for Chapter 15 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Coagulation KernelCoagulation kernel (rate coefficient)

Brownian diffusionConvective Brownian diffusion enhancementGravitational collectionTurbulent inertial motionTurbulent shearVan der Waals forcesViscous forcesFractal geometryDiffusiophoresisThermophoresisElectric charge

Kernel = product of coalescence efficiency and collision kernel(15.27)

βi, j =Ecoal,i,j Ki, j

Page 26: Presentation Slides for Chapter 15 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Brownian Diffusion KernelBrownian motion

Irregular motion of particle due to random bombardment by gas molecules

Continuum regime Brownian collision kernel (cm3 partic. s-1) (15.28)

Particle diffusion coefficient (15.29)

Cunningham slip-flow correction to particle resistance to motion(15.30)

Ki, jB =4π ri +rj( ) Dp,i +Dp, j( )

Dp,i =kBT

6πriηaGi

Gi =1+Kna,i ′ A + ′ B exp− ′ C Kna,i( )[ ]

Page 27: Presentation Slides for Chapter 15 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Brownian Diffusion KernelFree molecular regime Brownian collision kernel (cm3 partic. s-1)

(15.31)

Particle thermal speed (15.32)

Interpolate between continuum and free molecular regimes(15.33)

Ki, jB =π ri +rj( )

2v p,i

2 +v p, j2

v p,i =8kBTπM p,i

Ki, jB =

4π ri +rj( ) Dp,i +Dp, j( )

ri +rj

ri +r j + δi2 +δ j

2+

4 Dp,i +Dp, j( )

v p,i2 +v p, j

2 ri +rj( )

Page 28: Presentation Slides for Chapter 15 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Brownian Diffusion KernelMean distance from center of a sphere reached by particles leaving the sphere's surface and traveling a distance p,i

(15.34)

Particle mean free path (cm) (15.34)

δi =2ri +λp,i( )

3− 4ri

2 +λp,i2

( )3 2

6riλp,i−2ri

λp,i =8Dp,iπv p,i

Page 29: Presentation Slides for Chapter 15 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Brownian Diffusion EnhancementEddies created in the wake of a large, falling particle enhance diffusion to the particle

surface

Particle Schmidt number (15.36)

Brownian diffusion enhancement collision kernel (15.35)

Ki, jDE =

Ki, jB 0.45Rej

1/3Scp,i1/3 Rej ≤1; rj ≥ri

Ki, jB 0.45Rej

1/2Scp,i1/3 Rej >1; rj ≥ri

⎧ ⎨ ⎪

⎩ ⎪

Scp,i =νaDp,i

Page 30: Presentation Slides for Chapter 15 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Gravitational CollectionCollision and coalescence when one particle falls faster than and catches up with another

Collection (coalescence) efficiency (15.38)

Differential fall speed collision kernel (15.37)

Ki, jGC =Ecoll,i,j π ri +rj( )

2Vf,i −Vf,j

Ecoll,i, j =60EV,i, j +EA,i, j Rej

60+Rejrj ≥ri

Ecoll,i,j simplifies to EVi,j when Rej « 1 (viscous flows)EAi,j when Rej » 1 (potential flows)

Page 31: Presentation Slides for Chapter 15 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Gravitational Collection

Stokes number

(15.39)

EV,i,j =1+

0.75ln 2Sti, j( )

Sti, j −1.214

⎢ ⎢

⎥ ⎥

−2

Sti, j >1.214

0 Sti, j ≤1.214

⎨ ⎪ ⎪

⎩ ⎪ ⎪

EA,i,j =Sti,j

2

Sti,j +0.5( )2

Sti, j =Vf,i Vf, j −Vf,i rj g for rj≥ri

Page 32: Presentation Slides for Chapter 15 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Turbulent Inertia and ShearCollision kernel due to turbulent inertial motion

Collision between drops moving relative to air (15.40)

Collision kernel due to turbulent shearCollisions due to spatial variations in turbulent velocities of drops moving with air (15.41)

k = dissipation rate of turbulent energy per gram (cm2 s-3)

Ki, jTI =

πεd3 4

gνa14 ri +rj( )

2Vf,i −Vf,j

Ki, jTS =

8πεd15νa

⎝ ⎜

⎠ ⎟

12

ri +r j( )3

Page 33: Presentation Slides for Chapter 15 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Comparisons of Coagulation KernelsCoagulation kernels when particle of (a) 0.01 μm and (b) 10 μm in radius coagulate at 298

K.

10

-17

10

-15

10

-13

10

-11

10

-9

10

-7

0.01 0.1 1 10

Coagulation kernel (cm

3

particle

-1

s

-1

)

Radius of second particle ( μ )m

Total

Brownian

. Diff

enhancement

Settling

.Turb

inertia

.Turb

shear

Ker

nel (

cm3 p

arti

cle-1

s-1)

Fig. 15.7

10

-17

10

-15

10

-13

10

-11

10

-9

10

-7

0.01 0.1 1 10

Coagulation kernel (cm

3

particle

-1

s

-1

)

Radius of second particle ( μ )m

Total

Brownian

. Diff

enhancement

Settling

. Turb inertia

. Turb shear

Ker

nel (

cm3 p

arti

cle-1

s-1)

Page 34: Presentation Slides for Chapter 15 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Van der Waals/Viscous ForcesVan der Waals forces

Weak dipole-dipole attractions caused by brief, local charge fluctuations in nonpolar molecules having no net charge

Viscous forces

Two particles moving toward each other in viscous medium have diffusion coefficients smaller than the sum of the two

Van der Waals/viscous collision kernel (15.42)

Ki, jV =Ki, j

B VE,i, j −1( ) =Ki,jB

Wc,i,j 1+4 Dp,i +Dp, j( )

v p,i2 +v p, j

2 ri +rj( )

⎢ ⎢ ⎢

⎥ ⎥ ⎥

1+Wc,i, j

Wk,i,j

4 Dp,i +Dp,j( )

v p,i2 +v p, j

2 ri +rj( )

−1

⎪ ⎪ ⎪

⎪ ⎪ ⎪

⎪ ⎪ ⎪

⎪ ⎪ ⎪

Page 35: Presentation Slides for Chapter 15 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Van der Waals/Viscous Forces

Free-molecular regime correction (15.43)

Free-molecular regime correction (15.44)

Wk,i, j =−1

2 ri +rj( )2kBT

dEP,i,j r( )

dr+r

d2EP,i, j r( )

dr2

⎝ ⎜ ⎜

⎠ ⎟ ⎟

×

exp−1

kBTr2

dEP,i, j r( )

dr+EP,i, j r( )

⎝ ⎜

⎠ ⎟

⎣ ⎢

⎦ ⎥

⎪ ⎪ ⎪

⎪ ⎪ ⎪

⎪ ⎪ ⎪

⎪ ⎪ ⎪

ri +rj

∞∫ r2dr

Wc,i, j =1

ri +rj( )Di, j

Dr,i,jr( )exp

EP,i, j r( )

kBT

⎣ ⎢

⎦ ⎥ ri +rj

∞∫

dr

r2

Page 36: Presentation Slides for Chapter 15 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Van der Waals/Viscous Forces

Van der Waals interaction potential (15.46)

Particle pair Knudsen number (15.47)

EP,i, j r( ) =−AH6

2rirj

r2 − ri +rj( )2 +

2rirj

r2 − ri −rj( )2 +ln

r2 − ri +rj( )2

r2 − ri −rj( )2

⎢ ⎢ ⎢

⎥ ⎥ ⎥

Knp =λp,i2 +λ p, j

2

ri +rj

Page 37: Presentation Slides for Chapter 15 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Van der Waals/Viscous Forces

Fig. 15.8

Van der Waals/viscous correction factor

0

1

2

3

4

5

6

0.01 0.1 1 10 100 1000

1

2

5

10

50

250

Correction factor

Particle Knudsen number

r

2

/r

1

Cor

rect

ion

fact

or

Page 38: Presentation Slides for Chapter 15 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Fractal GeometryFractals

Particles of irregular, fragmented shape

Number of spherules in aggregate (15.49)

Fractal (outer) radius of agglomerate (15.48)

rf,i =rsNi1D f

Ns,i =υiυs

Page 39: Presentation Slides for Chapter 15 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Fractal Geometry

Area-equivalent radius (15.51)

Mobility radius (15.50)

rm,i =MAXrf,i

ln rf,i rs( )+1,rf,i

Df −1

2⎛

⎝ ⎜

⎠ ⎟ 0.7

,rA,i

⎧ ⎨ ⎪

⎩ ⎪

⎫ ⎬ ⎪

⎭ ⎪

rA,i =rs MAX Ns,i2 3

,MIN 1+23

Ns,i −1( ),13

Df Ns,i2 Df⎡

⎣ ⎢ ⎤ ⎦ ⎥

⎧ ⎨ ⎩

⎫ ⎬ ⎭

Page 40: Presentation Slides for Chapter 15 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Fractal Geometry

Brownian collision kernel modified for fractals (15.52)

Ki, jB =

4π rc,i +rc, j( ) Dm,i +Dm, j( )

rc,i +rc, j

rc,i +rc, j + δm,i2 +δm, j

2+

4 Dm,i +Dm, j( )

v p,i2 +v p, j

2 rc,i +rc, j( )

Page 41: Presentation Slides for Chapter 15 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Modified Brownian Collision Kernels

Fig. 15.9

10

-9

10

-8

10

-7

10

-6

10

-5

10

-4

0.01 0.1 1

Spherical, no van der Waals

Spherical, with van der Waals

Fractal, no van der Waals

Fractal, with van der Waals

Collision kernel

(cm

3

partic.

-1

s

-1

)

Volume-equivalent diameter of second particle ( μ )m

- Volume equivalent diameter of

=10 first particle nmKer

nel (

cm3 p

arti

cle-1

s-1)

Page 42: Presentation Slides for Chapter 15 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Modified Brownian Collision Kernels

Fig. 15.9

10

-9

10

-8

10

-7

0.01 0.1 1

Spherical, no van der Waals

Spherical, with van der Waals

Fractal, no van der Waals

Fractal, with van der Waals

Collision kernel

(cm

3

partic.

-1

s

-1

)

Volume-equivalent diameter of second particle ( μ )m

- =100 Volume equivalent diameter of first particle nm

Ker

nel (

cm3 p

arti

cle-1

s-1)

Page 43: Presentation Slides for Chapter 15 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Effect on Aerosol Evolution

Fig. 15.10

0 10

0

5 10

4

1 10

5

1.5 10

5

2 10

5

2.5 10

5

3 10

5

3.5 10

5

4 10

5

0.01 0.1 1

8 s

1 m

2 m

3 m

5 m

10 m

15 m

20 m

30 m

45 m

dn (No. cm

-3

) / d log

10

D

p

Particle diameter (D

p

, μ )m

Sum of all distributions

, Spheres no van der Waals

Box Model

dn (

No.

cm

-3)

/ d lo

g 10D

p

Page 44: Presentation Slides for Chapter 15 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Effect on Aerosol Evolution

Fig. 15.10

0 10

0

1 10

5

2 10

5

3 10

5

4 10

5

0.01 0.1 1

8 s

1 m

2 m

3 m

5 m

10 m

dn (No. cm

-3

) / d log

10

D

p

Particle diameter (D

p

, μ )m

Sum of all distributions

, Fractal with van der Waals

Box model

dn (

No.

cm

-3)

/ d lo

g 10D

p

Page 45: Presentation Slides for Chapter 15 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Diffusiophoresis/Thermophoresis/ChargeDiffusiophoresis

Flow of aerosol particles down concentration gradient of gas due to bombardment of particles by the gas as it diffuses down same gradient

ThermophoresisFlow of aerosol particles from warm to cool air due to bombardment of particles by gases in presence of temperature gradient.

Electric chargeOpposite-charge particles attract due to Coulomb forces

Page 46: Presentation Slides for Chapter 15 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Mobility (15.54)

Collision kernel for diffusiophoresis, thermophoresis, charge, other kernels

Diffusiophoresis/Thermophoresis/Charge

Particle diffusion coefficient (15.57)

Ki, j =4πBP,iCi, j

exp 4πBP,i Ci, j Ki, jB +Ki, j

DE +Ki,jTI +Ki, j

TS[ ]

⎛ ⎝

⎞ ⎠

−1

BP,i =Vf,iFG

=Vf,iFD

=Gi

6πηari=

Dp,ikBT

Dp,i =BP,ikBT

Page 47: Presentation Slides for Chapter 15 of Fundamentals of Atmospheric Modeling 2 nd  Edition

(15.59)

Diffusiophoresis, thermophoresis, charge terms (15.58)

Diffusiophoresis/Thermophoresis/Charge

(15.60)

(15.61)

Ci, j =Ci, jTh+Ci,j

Df +Ci, je

Ci, jTh =−

12πriηa κa+2.5κpKna,i( )κarj T∞−Ts, j( )Fh,L, j

51+3Kna,i( ) κp +2κa +5κpKna,i( )pa

Ci, jDf =−6πηari

0.74Dvmdrj ρv −ρv,s( )Fv,L, j

Gi mvρa

Ci, je =QiQ j

Page 48: Presentation Slides for Chapter 15 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Collision Efficiency for Cloud-Aerosol Coagulation

Fig. 15.11

10

-5

10

-4

10

-3

10

-2

10

-1

10

0

0.001 0.01 0.1 1 10

Collision efficiency

Radius of aerosol particle ( μ )m

d

=0, =0q

d

=0, =2q

d

=100, =2q

d

=100, =0q

r

large

=42 μ m

Col

lisi

on e

ffic

ienc

y

Page 49: Presentation Slides for Chapter 15 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Collision Kernel for Cloud-Aerosol Coagulation

Fig. 15.12

10

-10

10

-9

10

-8

10

-7

10

-6

10

-5

10

-4

10

-3

10

-2

0.001 0.01 0.1 1 10

Collision kernel (cm

3

partic.

-1

s

-1

)

Radius of small particle ( μ )m

r

large

=42 μ mBrownian

. . .Br Dif Enhanc

Total

. Turb shear

. .Turb Inert

.Grav

Ker

nel (

cm3 p

arti

cle-1

s-1)


Recommended