+ All Categories
Home > Documents > Subject index

Subject index

Date post: 31-Dec-2016
Category:
Upload: truongque
View: 213 times
Download: 0 times
Share this document with a friend
10
Integration of Central and Peripheral Receptors in Hunger and Energy Metabolism Brain Research Bulletin. Vol. 5, Suppl. 4, p. 197. ANKHO International Inc., 1980. Adrenal efferents adrenal nerve, 175 glucose sensitive afferents, 175 intraportal venous infusion, 175 pancreatic branch of the vagus nerve, 175 vagal pancreatic efferents, 175 Adrenal nerve adrenal efferents, 175 glucose sensitive afferents, 175 intraportal venous infusion, 175 pancreatic branch of the vagus nerve. 175 vagal pancreatic efferents, 175 Amygdala bar press, 143 discrimination, 143 drive, 143 eating, 143 lateral hypothalamus, 143 reward, 143 unit activity, 143 Anorexia intraportal adrenaline, 59 intraportal glucose, 59 satiation, 59 Anticipatory reflexes diuresis, 97 glucagon, 97 gustatory projections, 97 insulin, 97 integration, 97 osmosensitive neurons, 97 satiation, 97 Antidiuretic hormone hepatic osmoregulation, 189 horseradish peroxidase, 189 ingestive behavior, 189 single-unit recording, 189 visceral afferents, 189 Aphagia blood glucose, 109 body weight regulation, 109 2-deoxy-D-glucose, 109 free fatty acids, 109 gastric pathology, 109 insulin, 109 lateral hypothalamus, 109 lesions, 109 parasagittal knifecuts, 109 triglycerides, 109 Autonomic hypothesis dopamine+hydroxylase, 119 gastric acid, 119 hyperinsulinemia, 119 lipoprotein lipase, 119 pyruvate dehydrogenase, 119 salivary glands, 119 VOLUME 4 1980 SUBJECT INDEX sympathetic suppression, 119 vogal hyperactivity, 119 ventromedial hypothalamic obesity, 119 Autonomic nervous system body weight, 103 eating, 103 insulin secretion, 103 parasympathetic neural input, 103 sympathetic neural input, 103 Bar press amygdala, 143 discrimination, 143 drive, 143 eating, 143 lateral hypothalamus, 143 reward, 143 unit activity, 143 Blood glucose aphagia, 109 body weight regulation, 109 2-deoxy-D-glucose, 109 free fatty acids, 109 gastric pathology, 109 insulin, 109 lateral hypothalamus, 109 lesions, 109 parasagittal knife cuts, 109 triglycerides, 109 Blood glucose levels eating, 17 food deprivation, 17 liver glycogen levels, 17 pancreatic glucagon, 17 short-term food intake regulation, 17 Body weight autonomic nervous system, 103 drinking, 7, 13 eating, 7, 13, 69, 103 genetic obesity, 69 humoral factors, 13 hypothalamic obesity, 69 insulin, 7 insulin secretion, 103 jejunoileal bypass, 69 meal patterns, 7 minipump, 7 parabiotic rats, 13 parasympathetic neural input, 103 regulation, 13 satiety, 7 spontaneous obesity, 69 streptozotocin-diabetes, 7 sympathetic neural input, 103 197
Transcript
Page 1: Subject index

Integration of Central and Peripheral Receptors in Hunger and Energy Metabolism Brain Research Bulletin. Vol. 5, Suppl. 4, p. 197. ANKHO International Inc., 1980.

Adrenal efferents adrenal nerve, 175 glucose sensitive afferents, 175 intraportal venous infusion, 175 pancreatic branch of the vagus nerve, 175 vagal pancreatic efferents, 175

Adrenal nerve adrenal efferents, 175 glucose sensitive afferents, 175 intraportal venous infusion, 175 pancreatic branch of the vagus nerve. 175 vagal pancreatic efferents, 175

Amygdala bar press, 143 discrimination, 143 drive, 143 eating, 143 lateral hypothalamus, 143 reward, 143 unit activity, 143

Anorexia intraportal adrenaline, 59 intraportal glucose, 59 satiation, 59

Anticipatory reflexes diuresis, 97 glucagon, 97 gustatory projections, 97 insulin, 97 integration, 97 osmosensitive neurons, 97 satiation, 97

Antidiuretic hormone hepatic osmoregulation, 189 horseradish peroxidase, 189 ingestive behavior, 189 single-unit recording, 189 visceral afferents, 189

Aphagia blood glucose, 109 body weight regulation, 109 2-deoxy-D-glucose, 109 free fatty acids, 109 gastric pathology, 109 insulin, 109 lateral hypothalamus, 109 lesions, 109 parasagittal knifecuts, 109 triglycerides, 109

Autonomic hypothesis dopamine+hydroxylase, 119 gastric acid, 119 hyperinsulinemia, 119 lipoprotein lipase, 119 pyruvate dehydrogenase, 119 salivary glands, 119

VOLUME 4 1980

SUBJECT INDEX

sympathetic suppression, 119 vogal hyperactivity, 119 ventromedial hypothalamic obesity, 119

Autonomic nervous system body weight, 103 eating, 103 insulin secretion, 103 parasympathetic neural input, 103 sympathetic neural input, 103

Bar press amygdala, 143 discrimination, 143 drive, 143 eating, 143 lateral hypothalamus, 143 reward, 143 unit activity, 143

Blood glucose aphagia, 109 body weight regulation, 109 2-deoxy-D-glucose, 109 free fatty acids, 109 gastric pathology, 109 insulin, 109 lateral hypothalamus, 109 lesions, 109 parasagittal knife cuts, 109 triglycerides, 109

Blood glucose levels eating, 17 food deprivation, 17 liver glycogen levels, 17 pancreatic glucagon, 17 short-term food intake regulation, 17

Body weight autonomic nervous system, 103 drinking, 7, 13 eating, 7, 13, 69, 103 genetic obesity, 69 humoral factors, 13 hypothalamic obesity, 69 insulin, 7 insulin secretion, 103 jejunoileal bypass, 69 meal patterns, 7 minipump, 7 parabiotic rats, 13 parasympathetic neural input, 103 regulation, 13 satiety, 7 spontaneous obesity, 69 streptozotocin-diabetes, 7 sympathetic neural input, 103

197

Page 2: Subject index

19X

Body weight regulation aphagia, 109

blood glucose, 109 2-deoxy-D-glucose, IO9 free fatty acids, 109 gastric pathology. IO9 insulin, I09

lateral hypothalamus, IO9 lesions, 169

parasagittal knife cuts. IO9 triglycerides, 109

Bombesin

cholecystokinin, I 2-deoxy-D-glucose. I33 eating, I

gastric acid secretion, I33 insulin, I, 133

lateral hypothalamus, 133 long-term satiety signals, I

neuroendocrine regulation, I neurotensin, 133 satiety signals, I

short-term satiety signals. I Somatostatin. I

Brain

amygdala, 143

lateral hypothalamus. lO9, 133. 143. 151, 163. 181 lateral preoptic area, I81

medial forebrain bundle, IHI mesencephalon, 75 motor cortex, I.51 orbitofrontal cortex, IS I pyramidal tract. I51 septum, 89

ventromedial hypothalamus, 43, 119. 127

Central nervous system eating, 63

gastric acid secretion. 63

hypoglycemia, 63 insulin, 63

liver, 63

Cephalic phase insulin response

hypothalamic hyperphagia, I27 hypothalamic obesity. 127 quinine. 127 saccharin, 127

VMH procainization. I27 Cholecystokinin

bombesin, I eating, I insulin, I

long-term satiety signals, I neuroendocrine regulation. I satiety signals, I

short-term satiety signals, I somatostatin. I

Chronic decerebrate ingestion and rejection responses. 79

regulatory responses, 79 sympathoadrenal response, 79

Computer modeling diet dilution, 89 eating, 89 lesions, 89 meal patterns, 89 %cptum, 89

cuff duodenum, 55 pylorus, 55 satiety. 55 stomach, SS

?-Deoxy-D-glucose

aphagia. IO9 blood glucose. IO9

body weight regulation. IO9 bomb&n. I33 eating. 37

enzymes. 37 free fatty acid\. IO9 galactosc. 37

ga\tric acid secretion, 133 ga\tric pathology. ItIt9 glucoprivation. 37 glucose. 37

inWlin. 37. 109, 173 lateral hypothalamus, 109. 133 IeGons. I09 metabolism. 37 neurotensin. 133 ontogenesis. 37

parasapittal knife cuts. IO9 phloridzin. 37

triglycerides. I09 “C-l~eoxyplucose

diaphragm. 43 energy homeostasis, 43 glycolysis. 4.7 hunger. 43 metabolism. -I3

optical density. 43 \trcptozotocin-diabetes. 43

ventromedial hypothalamus. 43 Diaphragm

“C-deoxyglucose. 43 energy homeostasis. 47 glycolysis. 43 hunger. 43 metabolism. 43 optical density. 43 \trcptozotocin-diabetes. 43

vcntromedial hypothalamus. 43 Diet dilution

computer modeling. 89 carting. X9 lesions. X9 meal pattern\. 89

septum. 89 Discrimination

amygdala, 143 bar pie\\. l4?

drive 143 . eating. I43

Iatcral hypothalamus, I43 r,ewarJ. I43 unit activity. I43

Diurcsi\

anrtcipatory reflexes. 97 glucagon. 97 gustatory projections, 97 insulin. 97

integration. Y7 o\mo4ensitive neurons, 97 satiation. 97

Dopamine-fi-hydroxylase autonomic hypothesis, I I9 gastric acid. I I9 hyperinsulinemia, II9 lipoprotein lipase, I19 pyruvate dehydrogenase. I IY salivary glands, I I9 \ympathetic suppression, I I9 vagal hyperactivity. I19 ventromedial hypothalamic obesity. I IV

Page 3: Subject index

199

Drinking

body weight. 7. 13 eating, 7, 13 humoral factors, 13 insulin. 7

meal patterns, 7 minipump. 7 parabiotic rats. 13 regulation, I3 satiety, 7

streptozotocin-diabetes. 7 Drive

amygdala. 143 har press. 143 discrimination, 143 eating, 143 lateral hypothalamus. 143 reward, l4? unit activity. 143

Drug

2-deoxy-D-glucose, 37, 109, 133 “C-deoxyglucose. 43 epinephrine, 75

morphine, I69 naloxone. 169 phloridzin. 37

streptozotocin. 7, 43 Duodenum

cuff, 55 pylorus. 55 satiety. 55 stomach. 55

Eating

amygdala. 143 autonomic nervous system, 103 bar press, 143 blood glucose levels. I7

body weight, 7, 13. 69, 103 bomhesin, I central nervous system, 63 cholecystokinin, I computer modeling, 89 2-deoxy-D-glucose. 37 diet dilution, 89 discrimination, 143 drinking, 7. 13 drive. 143 enzymes. 37 food deprivation, 17 free-fatty acids. 23 galactose, 37

gas chromatography-mass spectrometry, 23 gastric acid secretion, 63 genetic obesity, 69 glucoprivation, 37 glucose, 29, 37 glycerol, 29 gustatory, 169

high fixed ratio schedule. I.51 humoral factors, I3 hypoglycemia, 63 hypothalamic obesity. 69 inhibition. 169 insulin, I, 7, 37, 63 insulin secretion, IO3 jejunoileal bypass, 69

lateral hypothalamus. 143, 151 lesions, 89 liver, 63 liver plycogen levels. I7

long-term satiety signals, I

meal patterns, 7, 29, 89 metabolism 37 minipump, 7 morphine, 169 motor cortex, I5 I naloxone, 169

neuroendocrine regulation, 1 ontogenesis, 37 orbitofrontal cortex, I51 organic acids, 23 pancreatic glucagon, 17 parabiotic rats, 13

parasympathetic neural input, 103 phloridzin, 37

pyramidal tract neurons, 151 regulation, I3 reversible. 169 reward. 143 satiety, 7

satiety signals, I septum, 89

short-term food intake regulation, 17 short-term satiety signals, I somatostatin, I

spontaneous obesity, 69 starvation, 23 streptozotocin-diabetes, 7

sympathetic neural input. 103 twilight zeitgebers, 23 unit activity, 143 weight regulation. 29

Energy homeostasis

“C-deoxyglucose, 43 diaphragm, 43 glycolysis, 43 hunger. 43 metabolism, 43 optical density, 43

streptozotocin-diabetes, 43

ventromedial hypothalamus, 43 Enzymes

2-deoxy-D-glucose, 37 eating, 37 galactose, 37

glucoprivation. 37 glucose, 37 insulin, 37 metabolism, 37

ontogenesis, 37 phloridzin, 37

Epinephrine glucose, 75 glycerol. 75 hyperactivity, 75

mesencephalic rats. 75

Food deprivation

blood glucose levels. 17 eating, I7

liver glycogen levels, I7 pancreatic glucagon, I7 short-term food intake regulation, 17

Free fatty acids aphagia, I09 blood glucose, I09 body weight regulation. 109 2-deoxy-D-glucose. 109 eating, 23 _ gas chromatography-mass spectrometry, 23 gastric pathology, IO9

Page 4: Subject index

Free fatty acids (continued) insulin, 109 lateral hypothalamus, WY lesions. IOY organic acids. 23 parasagittal knife cuts. 109 Varvation, 23 triglycerides. 109 twilight zeilgehers. 23

Galactose 2-deoxy-D-glucose. 17 eating, 37 enzymes, 37 glucoprivation. 37 glucose, 37 insulin, 37 metabolism, 37 ontogenesis, 37 phloridzin, 37

Gas chromatography-mass spectrometty eattng, 23 free fatty acids, 23 organic acids, 23 starvation, 23 twilight zeitgebers. 23

Gastric acid autonomic hypothesis, II9 dopamine-Shydroxylase. II9 hyperinsulinemia, I 19 li~protein lipase. I19 nyruvate dehydrogenase, I 19 Aivary glands, 119 5ympathetic suppression I 19 vagal hyperactivity, I 19 ventromedial hypothalamic obesity, I 19

Gastric acid secretion hombesin, 133 central nervous system, 63 2-deoxy-D-glucose. 133 eattng, 63 hypoglycemia, 63 insulin, 63, 133 lateral hypothalamus, I33 liver, 63 neurotensin. I33

Gastric pathology aphagia, 109 blood glucose, 109 hody weight regulation. 109 Ldeoxy-D-glucose, 109 free fatty acids, IO9 tnsulin. lo9 lateral hypothalamus. 109 lesions, 109 pararagittal knife cuts. lo9 triglycerides. 104

Genetic obesity body weight, 69 eating, 69 hypothalamic obesity, 69 jejunoileal bypass, 69 spontaneous obesity. 69

Glucagon anticipatory reflexes. 97 climesis, 97 gustatory projections. 97 msulin. 97 integration. 97 osmosensitive neurons, 97 satiation. 97

Glucoprivalion !-deoxy-D-glucose. 37 eating. 37 enzymes. 37 galactose. 37 glucose. 17 insulin, 37 metabolism. 37 ontogenesis, 37 phloridzin. 77

Glucose ?-deoxy-D.gluco\e. 37 cattng. 29. 37 enrymes, 37 epinephrm. 75 galacto\e. 37 glttcoprivation. 37 glycerol. 29. 75 hyperacttvity. 75 imulin, 37

meal pallems. 29 mcsencephalic r;ttb. 75 mrtabolism. 17 ontogene<t~, V phloridzin. 37 weight regulation, 29

Glucose sensitive a&rents adrenal efferents, 17.5 adrenal nerve, 175 mtraportal venous infusion, 17.5 p:tncreatic brunch of the vagus nerve. 175 vagal pancreatic efferents. 175

Gly-cerol caring. 29 epinephrine. ?5 ~:LUCOSC. 29. 75 hypewctivity . 75 meal patlent\. 29 mesencephalic rat<. 75 weight regulation. 29

Glyrolysis “(1-deoxvglucose. 43 diaphragm. 43 energy homeostaais. 43 hunget. 43 metabolism. 43 optical density, 43 ~treptozatooin-diabetes, 43 ventromedial hypothalamus. 43

Gu\t;ltotq eating, 169 Inhibition. I69 morphine. I69 naloxone, 169 reversible. I69

Gustatory projections imticipatory reflexes. 97 Jiuresis. 97 $Kapon. 97 rnculio. 97 Integration. 47 o5mosen*itivr neurons. 97 \ittintion. 97

Hepatic osmoregulatton antidiuretic hormone, 189 horseradish peroxidase, 189 ingestive behavior, 189 \ingle-unit recording, I89 visceral afferents, 189

Page 5: Subject index

201

High fixed ratio schedule eating, 151 lateral hypothalamus, 151 motor cortex, 151 orbitofrontal cortex, 151 pyramidal tract neurons, 151

Hormone antidiuretic hormone, 189 bombesin, 1, 133 cholecystokinin, 1 glucagon, 17, 97 insulin, I, 7, 37, 63, 97, 103, 109, 127, 133 somatostatin. 1

Horseradish peroxidase antidiuretic hormone, 189 hepatic osmoregulation, 189 hypothalamic interconnections, 181 ingestive behavior, 189 lateral hypothalamus, 181 lateral preoptic area, 181 medial forebrain bundle, 181 single-unit recording, 189 stomach distension, 181 vagus nerve stimulation, 181 visceral afferents, 189

Humoral factors body weight, 13 drinking, 13 eating, 13 parabiotic rats, 13 regulation, 13

Hunger ‘“C-deoxyglucose, 43 diaphragm, 43 energy homeostasis, 43 glycolysis, 43 metabolism, 43 optical density, 43 streptozotocin-diabetes, 43 ventromedial hypothalamus, 43

Hyperactivity epinephrine, 75 glucose, 75 glycerol, 75 mesencephalic rats, 75

Hyperinsulinemia autonomic hypothesis, 119 dopamine+hydroxylase, II9 gastric acid, 119 lipoprotein lipase, 119 pyruvate dehydrogenase, 119 salivary glands, 119 sympathetic suppression, 1 I9 vagal hyperactivity, 119 ventromedial hypothalamic obesity, 119

Hypoglycemia central nervous system, 63 eating, 63 gastric acid secretion, 63 insulin, 63 liver, 63

Hypothalamic Hypothalamic hyperphagia cephalic phase insulin response. 127 hypothalamic obesity, 127 quinine, 127 saccharin, 127 VMH procainization, 127

Hypothalamic interconnections horseradish peroxidase, 181 lateral hypothalamus, 181 lateral preoptic area, I81 medial forebrain bundle. 181

stomach distension, 181 vagus nerve stimulation, 181

Hypothalamic obesity body weight. 69 cephalic phase insulin response, 127 eating, 69 genetic obesity, 69 hypothalamic hyperphagia, 127 jejunoileal bypass, 69 quinine, 127 saccharin, 127 spontaneous obesity, 69 VMH procainization, 127

Ingestion and rejection responses chronic decerebrate, 79 regulatory responses, 79 sympathoadrenal response, 79

Ingestive behavior antidiuretic hormone, 189 hepatic osmoregulation, 189 horseradish peroxidase, 189 single-unit recording, 189 visceral afferents, 189

Inhibition eating, 169 gustatory, 169 morphine, 169 naloxone, 169 reversible, I69

Insulin anticipatory reflexes, 97 aphagia, 109 blood glucose, 109 body weight, 7 body weight regulation, 109 bombesin, 1, 133 central nervous system, 63 cholecystokinin, 1 2-deoxy-D-glucose, 37, 109, 133 diuresis, 97 drinking, 7 eating, I, 7, 37, 63 enzymes, 37 free fatty acids, 109 galactose, 37 gastric acid secretion, 63, 133 gastric pathology, 109 glucagon, 97 glucoprivation, 37 glucose, 37 gustatory projections, 97 hypoglycemia, 63 integration, 97 lateral hypothalamus, 109, 133 lesions, 109 liver, 63 long-term satiety signals, 1 meal patterns, 7 metabolism, 37 minipump. 7 neuroendocrine regulation, I neurotensin, 133 ontogenesis, 37 osmosensitive neurons, 97 parasagittal knife cuts, 109 phloridzin, 37 satiation, 97 satiety, 7 satiety signals, I short-term satiety signals, 1

Page 6: Subject index

Insulin (continued) somatostatin. 1 streptozotocin-diabetes. 7 triglycerides, 109

Insulin secretion

autonomic nervous system, IO?

body weight, 103 eating. 103

parasympathetic neural input, 103 sympathetic neural input, 103

Integration anticipatory reflexes, 97 diuresis. 97 glucagon. 97

gustatory projections. 97 insulin. 97

osmosensitive neurons, 97 satiation, 97

Intraportal adrenaline anorexia, 59

intrdportal glucose, S9 satiation. 59

Jntraportal glucose anorexia, 59

intraportal adrenaline. S9 4atiation. 59

Jntraportal venous infusion adrenal efferents, 175 adrenal nerve. 175 glucose sensitive afferents. 175

pancreatic branch of the vagus nerve. 17.5 vagal pancreatic efferents. 175

Jejunoileal bypass body weight, 69 eating, 69 genetic obesity, 69

hypothalamic obesity, 69 spontaneous obesity. 69

Lateral hypothalamus amygdala, 143 aphdgia, 109 bar press, 143

blood glucose, 109 body weight regulation, 109 bombesin, 133 2-deoxy-D-glucose, 109, 133 discrimination, 143 drive, I43

eating, 143, 151 free fatty acids, IOY gastric acid secretion, 133 gastric pathology, 109 high fixed ratio schedule, 151 horseradish peroxidase, I8 I hypothalamic interconnections. 181 insulin, 109, 133 lateral preoptic area, 181 lesions, 109 medial forebrain bundle. 181 motor cortex, IS I neurotensin. 133 orbitofrontal cortex, I5 I pancreas, 163 parasagittal knife cuts, 109 pyramidal tract neurons. 151 reward, 143 splanchnic nerve, 163 stimulation, 163

\tomach distension. IHI triglycerides. I09 unit activity. 147 vagus nerve. 163

vagu\ nerve stimulation. IXI Lateral preoplic area

horseradish peroxidase. 181

hypothalamic interconnections. 1x1 lateral hypothalamus. 181 medial forebrain bundle. I81 \tomach distension, 181 vagu\ nerve stimulation. 1x1

I.e\ions

aphagia, JOY blood glucose, 109 body weight regulation. IOY computer modeling, 89 2-deoxy-D-glucose. 109 diet dilution. g9 eating, X9

free fatty acrds. 109 gastric pathology. 1OY

insulin. IOY lateral hypothalamus. 109

meal patterns. 89 parasagittal knife cuts. IOY

septum, 8Y triglycerides. IO9

Lipoprotein lipnse autonomic hypothesis. I I9

dopamine-P-hydroxylase. I19 pa\tric acid. I19 hyperinsulinemia, 119 pyruvate dehydrogenase. I19 salivary glands. I I9

sympathetic suppression. I I9 vagal hyperactivity, 119 ventromedial hypothalamic obesity, I I9

L.iver

central nervou\ system. 63 eating. 63

gastric acid secretion. 63

hypoglycemia. 63 insulin, 63

I .iver glycogcn levels

blood glucose levels, I7 eating, 17 food deprivation. I7 pancreatic glucagon, I7 short-term food intake regulation, 17

l.ong-term satiety signal%

hombesin. 1 cholecystokinin. I eating. I insulin. I neuroendocrine regulation. I \afiety Ggnals. I short-term satiety signals. I \omatostatin, I

Meal patter-n\ body weight, 7 computer modeling, 89 diet dilution, 89 drinking. 7 eating, 7. 29. 89 glucose. 29 glycerol, ?Y insulin. 7 lesions, XY minipump. 7

Page 7: Subject index

203

satiety, 7 septum, 89 streptozotocin-diabetes, 7 weight regulation, 29

Medial forebrain bundle horseradish peroxidase, 181 hypothalamic interconnections, 181 lateral hypothalamus, 181 lateral preoptic area, 181 stomach distension, 181 vagus nerve stimulation, 181

Mesencephalic rats epinephrine, 75 glucose, 75 glycerol, 75 hyperactivity, 75

Metabolism 2-deoxy-D-glucose, 37 “C-deoxyglucose, 43 diaphragm, 43 eating, 37 energy homeostasis, 43 enzymes, 37 galactose, 37 glucoprivation, 37 glucose, 37 glycolysis, 43 hunger, 43 insulin, 37 ontogenesis. 37 optical density, 43 phloridzin, 37 streptozotocin-diabetes, 43 ventromedial hypothalamus, 43

Minipump body weight, 7 drinking, 7 eating, 7 insulin, 7 meal patterns, 7 satiety, 7 streptozotocin-diabetes, 7

Morphine eating, 169 gustatory, 169 inhibition, 169 naloxone, 169 reversible, 169

Motor cortex eating, 151 high fixed ratio schedule, 151 lateral hypothalamus, 151 orbitofrontal cortex, 151 pyramidal tract neurons, 151

Naloxone eating, 169 gustatory, 169 inhibition. 169 morphine, 169 reversible, 169

Neuroendocrine regulation bombesin, I cholecystokinin, 1 eating, 1 insulin, 1 long-term satiety signals, 1 satiety signals, 1 short-term satiety signals, I somatostatin, 1

Neurotensin bombesin, 133 2-deoxy-D-glucose, 133 gastric acid secretion, 133 insulin, 133 lateral hypothalamus, I33

Ontogenesis 2-deoxy-D-glucose, 37 eating, 37 enzymes, 37 galactose, 37 glucoprivation, 37 glucose, 37 insulin, 37 metabolism, 37 phloridzin, 37

Optical density ‘T-deoxyglucose, 43 diaphragm, 43 energy homeostasis, 43 glycolysis, 43 hunger, 43 metabolism, 43 streptozotocin-diabetes, 43 ventromedial hypothalamus, 43

Orbitofrontal cortex eating, 15 1 high fixed ratio schedule, 151 lateral hypothalamus, 151 motor cortex, 151 pyramidal tract neurons, 151

Organic acids eating, 23 free fatty acids, 23 gas chromatography-mass spectometry, 23 starvation, 23 twilight Zeitgebers, 23

Osmosensitive neurons anticipatory reflexes, 97 diuresis, 97 glucagon, 97 gustatory projections, 97 insulin, 97 integration, 97 satiation, 97

Pancreas lateral hypothalamus, 163 splanchnic nerve, 163 stimulation, 163 vagus nerve, 163

Pancreatic branch of the vagus nerve adrenal efferents, 175 adrenal nerve, 175 glucose sensitive afferents, 175 intraportal venous infusion, 175 vagal pancreatic efferents, 175

Pancreatic glucagon blood glucose levels, I7 eating, 17 food deprivation, 17 liver glycogen levels, 17 short-term food intake regulation, 17

Parabiotic rats body weight, 13 drinking, 13 eating, 13 humoral factors, 13 regulation, 13

Page 8: Subject index

204

Parasagittal knife cuts aphagia, 109 blood glucose, 109 body weight regulation, 109 ?-deoxy-D-glucose, I09 free fatty acids, 109 gastric pathology, IO9 insulin. 109 lateral hypothalamus. IO9 lesions. I09 triglycerides, 109

Parasympathetic neural input autonomic nervous system. 103 body weight, 103 eating, IO3 insulin secretion, 103 sympathetic neural input, 103

Phloridzin 2-deoxy-D-glucose, 37 eating, 37 enzymes. 3? galactose, 37 glucoprivation. 37 glucose, 37 insulin. 37 metabolism, 37 ontogenesis. 37

Pylorus cuff, 5s duodenum, 5.5 satiety, 55 stomach, 55

Pyramidal tract neurons eating, I51 high fixed ratio schedule, I51 lateral hypothalamus, 15 I motor cortex, 1st orbitofrontal conex, 151

Pyruvate dehydrogenase autonomic hypothesis, 119 dopamine+hydroxylase, II9 gastric acid. I19 hyperinsulinemia. I19 lipoprotein lipase, I I9 salivary glands, I I9 sympathetic suppression. I19 vagal hyperactivity. 1 I9 ventromedial hypothalamic obesity. I19

Quinine cephalic phase insulin response, 127 hypothalamic hyperphagia, 127 hypothalamic obesity, 127 saccharin, 127 VMH procainization, 127

Regulation body weight, I3 drinking, 13 eating, I3 humoral factors, I3 parabiotic rats, I3

Regulatory responses chronic decerebrate, 79 ingestion and rejection responses, 79 sympathoadrenal response, 79

Reversible eating, 169 gustatory, 169 inhibition, 169

morphine. 169 naloxone. I69

Reward amygdala. I43 bar press. I43 discrimination. I43 drive, 143 eating. I43 lateral hypothalamus, 143 unit activity. 143

Saccharin cephalic phase insulin response, I::

hypothalamic hyperphagia. I27 hypothalamic obesity. 127 quinine, I27 VMH procainization. 127

Salivary glands autonomic hypothesis, I I9 dopamine-phydroxylase. 119 gastric acid, II9 hyperinsulinemia. 1 I9 lipoprotein lipase, I I9 pyruvate dehydrogenase. II9 sympathetic suppression. I I9 vagal hyperactivity, 1 I9 ventromedial hypothalamic obesity,

Satiation anorexia. LY anticipatory reflexes. 97 Jiuresis. 9? glucagon. 9i gustatory projections. 97 insulin. 97 integration. 97 intraportal adrenaline. 59 intraportal glucose. 59 osmosensitive neurons. 97

Satiety body weight. 7 cuff, 55 drinking. 7 duodenum. 55 eating. 7 insulin. 7 meal patterns. 7 minipump. 7 pylurus, S.Z htomach. 55 \treptozotocin-diabetes. 7

Satiety signals hombesin. I cholecystokinin. I eating, I insulin. I long-term satiety signals, 1 neuroendocrine regulation. I short-term satiety signals. I >omatostatin. 1

Septum computer modeling, 89 diet dilution. 89 eating, 89 lesions, 89 meal patterns. 89

Short-term food intake regulation blood glucose levels. I7 eating, 17 food deprivation, I7 liver glycogen levels, 17 pancreatic glucagon. 17

19

Page 9: Subject index

205

Short-term satiety signals bombesin, 1 cholecystokin, I eating, 1 insulin, 1 long-term satiety signals, 1 neuroendocrine regulation, 1 satiety signals, 1 somatostatin, 1

Single-unit recording antidiuretic hormone, 189 hepatic osmoregulation, 189 horseradish peroxidase, 189 ingestive behavior, 189 visceral afferents, 189

Somatostatin bombesin, 1 cholecystokinin, 1 eating, I insulin, 1 long-term satiety signals, 1 neuroendocrine regulation, 1 satiety signals, 1 short-term satiety signals, 1

Splanchnic nerve lateral hypothalamus, 163 pancreas, 163 stimulation, 163 vagus nerve, 163

Spontaneous obesity body weight, 69 eating, 69 genetic obesity, 69 hypothalamic obesity, 69 jejunoileal bypass, 69

Starvation eating, 23 free fatty acids, 23 gas chromatography-mass spectrometry, 23 organic acids. 23 twilight zeitgebers, 23

Stimulation lateral hypothalamus, 163 pancreas, 163 splanchnic nerve, 163 vagus nerve, 163

Stomach cuff, 55 duodenum, 55 pylorus, 55 satiety, 55

Stomach distension horseradish peroxidase, 181 hypothalamic interconnections, 181 lateral hypothalamus, 181 lateral preoptic area, 181 medial forebrain bundle, 181 vagus nerve stimulation, 181

Streptozotocin-diabetes body weight, 7 ‘*C-deoxyglucose, 43 diaphragm, 43 drinking, 7 eating, 7 energy homeostasis, 43 glycolysis, 43 hunger, 43 insulin, 7 meal patterns, 7 metabolism, 43 minipump, 7 optical density, 43

satiety, 7 ventromedial hypothalamus, 43

Sympathetic neural input autonomic nervous system, 103 body weight, 103 eating, 103 insulin secretion, 103 parasympathetic neural input, 103

Sympathetic suppression autonomic hypothesis, 119 dopamine+hydroxylase, 119 gastric acid, 119 hyperinsulinemia, 119 lipoprotein lipase, 119 pyruvate dehydrogenase, 119 salivary glands, 119 vagal hyperactivity, 119 ventromedial hypothalamic obesity, 119

Sympathoadrenal response chronic decerebrate, 79 ingestion and rejection responses. 79 regulatory responses, 79

Triglycerides aphagia, 109 blood glucose, 109 body weight regulation, 109 2-deoxy-D-glucose, 109 free fatty acids, 109 gastric pathology, 109 insulin, 109 laterai hypothalamus, 109 lesions, 109 parasagittaf knife cuts, 109

Twilight Zeitgebers eating, 23 free fatty acids, 23 gas chromatography-mass spectrometry, 23 organic acids, 23 starvation, 23

Unit activity amygdala, 143 bar press, 143 discrimination, 143 drive, 143 eating, 143 lateral hypothalamus, 143 reward, 143

Vagal hyperactivity autonomic hypothesis, 119 dopamine+-hydroxylase, 119 gastric acid, 119 hyperinsuhnemia, 119 lipoprotein lipase, 119 pyruvate dehydrogenase, 119 salivary glands, 119 sympathetic suppression, 119 ventromedial hypothalamic obesity, 119

Vagal pancreatic efferents adrenal efferents, 175 adrenal nerve, 175 glucose sensitive afferents, 175 intraportal venous infusion, 175 pancreatic branch of the vagus nerve, 175

Vagus nerve lateral hypothalamus, 163 pancreas, 163

Page 10: Subject index

xti

Vagus nerve (continued) splanchnic nerve, 163 stimulation. 163

Vague nerve stimulation horseradish peroxidase. 181 hypothalamic interconnections. I81 lateral hypothalamus. I81 lateral preoptic area, 181 medial forebrain bundle. IXI stomach distension, 181

Ventromedial hypothalamic obesity autonomic hypothesis. I I9 dopamine-@-hydroxylase. I I9 gastric acid, I19 hyperinsulinemia, 119 lipoprotein lipase, I I9 pyruvate dehydrogenase. I I9 salivary glands, I I9 sympathetic suppression. I 19 vagal hyperactivity. 119

Ventromedial hypothalamus ‘.‘C-deoxyglucose. 47 diaphragm, 43 energy homeostasis. 4.;

glycolysis. 43 hunger. 43 metabolism. 42 optical density. 43 ~~reptozotocin-diabetes. 43

Visceral afferents irntidiuretic hormone, 189 hepatic osmoregulation. 189 horseradish peroxidase. I89 mgestive behavior. 189 single-unit recording. 189

V M H procainization cephalic phase insulin response. I ?t’ hypothalamic hyperphagia. 127 hypothalamic obesity. I?? quinine. I27 wccharin. 12’

Weight regulictlun eating. 19 gluco5c. 29 glycerol. 29 meal patterns. 29


Recommended