+ All Categories
Home > Documents > Trends and New Developments in Gaseous Detectorsvci.hephy.at/2004/presentations/monday/hoch.pdf ·...

Trends and New Developments in Gaseous Detectorsvci.hephy.at/2004/presentations/monday/hoch.pdf ·...

Date post: 19-Jan-2020
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
56
[email protected] Trends and New Developments in Gaseous Detectors Photo: Alice TPC field cage by m.hoch X th Vienna Conference on Instrumentation 2004
Transcript

[email protected]

Trends and New Developments in Gaseous Detectors

Photo: Alice TPC field cage by m.hoch

Xth Vienna Conference on Instrumentation 2004

• Traditional Wire Chambers― TPC: STAR, ALICE ― Drift Tubes ATLAS

• Resistive Plate Chamber RPC― Trigger-, Timing-, Multigap RPC

• Micro Pattern Gaseous Detectors MPGD― Mircomegas, GEM

• Introduction― History, Basics, Tools

ContentContent

PPCParallel Plate Counter

MWPCMultiwire Proportional Chamber

G.Charpak et al 1968 TPCTime Projection Chamber

D.R.Nygren et al 1974

PestovCounter

V.Pestov 1982

MSGCMicrostrip Gas Chambers

A.Oed 1988

µMMicromegas

I.Giomataris et al 1996

PCProportional Counter

Geiger CounterH.GeigerW.Mueller 1928

Gas Detector HistoryGas Detector History

GEMGas Electron Multiplier

F.Sauli 1997

RPCResistive Plate Chambers

R.Santonico R.Cardarelli 1981

• Good spatial resolution • Fast & big signals • Good dE/dx• Two track resolution • Many possible detector configuration

Low radiation length • Large area coverage• ….

Arguments in Favor for Gaseous DetectorsArguments in Favor for Gaseous Detectors

Simulation Tools: Simulation Tools:

• Energy deposit • Electric Field• Drift & Velocity• Amplification & Attachment

Efficient detector development is today possible with existing

precise and reliable simulation tools

Simulation Tools: Simulation Tools: • MAXWELL Ansoft

electrical field maps in 2D & 3D, finite element calculation for arbitrary electrodes & dielectrics

• HEED I.Smirnovenergy loss, ionization

• MAGBOLTZ Steve Biagielectron transport properties: drift, diffusion, multiplication attachment

• Garfield R.Veenhoffields, drift properties, signals(interfaced to programs above)

• PSpice Cadence D.S.electronic signal processingThese tools allow to simulate accurately detector configurations before construction

Example: Gaseous Detector in the LHC Experiments Example: Gaseous Detector in the LHC Experiments

ALICE: TPC (tracker), TRD (transition rad.), TOF (MRPC), HMPID (RICH-pad chamber), Muon tracking (pad chamber), Muontrigger (RPC)

ATLAS: TRD (straw tubes), MDT (muondrift tubes), Muon trigger (RPC, thin gap chambers)

CMS: Muon detector (drift tubes, CSC), RPC (muon trigger)

LHCb: Tracker (straw tubes), Muon detector (MWPC, GEM)

Traditional Wire

ChambersMWPC & TPC, Drift Tubes

The Time Projecting Chamber TPC:The Time Projecting Chamber TPC: Principle & HistoryPrinciple & History

particle track

anode planecathode plane

gating plane

Induced charge on the plane

E

Z (e- dr

ift ti

me)

Y

X

liberated e-

neg. high voltage plane

pad plane

D.R.Nygren et al Proposal PEP no4, Appendix A6H.J.Hilke et al,Performance ot a Time Projection Chamber, NIM 161 (1979)383.

Idea:1976; proposal for PEP no4 at LBLRealization:1982; PEP no4 at LBL 1989 TPCs at Cern - LEPAleph, Delphi90s heavy ion TPCsCeres Cern SPSNA49 Cern-SPS, STAR BNL – RHICUnder construction 2004:ALICE Cern - LHC

The Time Projecting Chamber TPC:The Time Projecting Chamber TPC: Principle & HistoryPrinciple & History

ALICE

NA49

STAR

ALEPH

PEP no4

Ceres NA45

D.R.Nygren et al Proposal PEP no4, Appendix A6H.J.Hilke et al,Performance ot a Time Projection Chamber, NIM 161 (1979)383.

420 cm

410cm

•Gas: Ar/CH4 90/10% •Drift Volume : 56m3

•Voltage : -28 kV •Drift field: E=135 V/cm

STAR TPC @ RHICSTAR TPC @ RHIC J.W.Harris et al. STAR detector overview, NIM A 499(2003) 624;

Space point resolution ~ 500 µmTwo-track separation 2.5 cmRapidity coverage –1.5 < η < 1.5 Momentum Resolution dp/p 2% (1GeV)Particle Identification with dE/dx 7%

STAR TPC @ RHICSTAR TPC @ RHIC J.W.Harris et al. STAR detector overview, NIM A 499(2003) 624;

Au-Au collisions @ CM energy 130GeV/n:

typically central event ~ 2000 tracks/event inside TPC

ALICE TPCALICE TPC

ALICE @ LHC:Obtain a fundamental

understanding of the microscopic structure in hadronic interactionat high densities and temperatures

Measure observables to study signature of a possible

Quark-gluon plasma QGP

LHC heavy ion program : Pb-Pb collisions at CM energy of 7.5 TeV/nWith dNch/dy ≤ 8000 (max expected)⇒2 x 104 tracks/ event in the sensitive

volume of the TPC

E E

520 cm

E E88µs

560cm

•HV central electrode: -100 kV •Drift length 250cm => E=400 V/cm•Gas: Ne-CO2 [90/10%]•Drift Volume: 88m3

ALICE TPCALICE TPC

Data challenge:570 132 (pads) x 500 (time bins)

2.85*108 space points/ event

Expected Performances:• Space point resolution ~500µm• Two-track separation 0.5 cm• dp/p <2% @ 1GeV, 10% @10GeV• dE/dx <7% • Rapidity coverage –0.9 < η < 0.9more infos: talk of Ch.Garabatos

•Materials with good stability–mass ratio•minimized radiation length

total detector X0=3%

Drift Tubes for the ATLAS Drift Tubes for the ATLAS MuonMuon--SpectrometerSpectrometer

30m

m 50µm

electronics electronics ‘tuned’ to be ‘tuned’ to be sensitive to first sensitive to first avalancheavalanche

Single tubes:Ar/CO2 (93/7%) with 3 barsingle tube resolution: ~100µm

Chambers:2 multilayers with 3 or 4 monolayers

MDT position resolution σsagitta~50µmOverall resolution:

rigorous control of:• assembly• deformation • calibration• alignment

2500mm

more infos: talk of F.Cerutti

Drift Tubes for the ATLAS Drift Tubes for the ATLAS MuonMuon--SpectrometerSpectrometer

Muon-Spectrometer provides standalone momentum resolutiondp/p ~10% at ~1TeV/cdp/p ~3% at ~100GeV/c⇒need overall dssagitta ~ 50µm⇒need low radiation length≤ 10%

Cover 5500m2

more infos: talk of F.Cerutti

Ageing Wire ChambersAgeing Wire Chambers

• Aging still a concern, specially for high luminosity collider experiments at LHC

• Last years big efforts have been made to avoid aging effects• All elements and materials in contact with the counting

gas have to be extensively tested and to be finally approved

TedlarAraldit

2013 3M DP190

C.Garabatos for the ALICE TPC collaboration, web page

Ageing Wire ChambersAgeing Wire Chambers

Traditional Wire ChambersTraditional Wire Chambers

Wire Chambers:

Well known technology widely used in HEP experiments

Proven to be robust, precise and reliable devices

Operating gases can be tuned and optimized to fulfill requirements of the given application

MPGDsMicro Pattern

Gaseous DetectorsMicromegas, GEM

CAT, µCat, µGroove, µDot, FGLD,….

Micromegas

50-100µm

70 -100µm

2000µm200µm

5µm

Micro Strip Gas ChamberMSGC

50µm

140µm

Gas Electron MultiplierGEM

Multi-Wire Proportional ChamberMWPC

Typical cell size in MWPC : ≥ 1mmPrecise etching technology allows to reduce cell size to ~100µm level.But due to small dimensions streamers develop more easily into sparks

…..

MicromegasMicromegas principleprinciple Y.Giomataris et al, NIM A 376 (1996) 29

50-100µm

50 -100µm

800µm50µm

MicromegasMicromegas PerformancePerformance D.Thers et al NIM A 469 (2001) 133

1000 10000 20000 30000 time[min]

aging: Ar-C4H10 94-6% up to 24.3mC/mm2

10 years LHC

1

0.8

0.6

0.4

0.2

1.8*1012 particles/mm2

1

0.9

0.8

0.7

0.6

10-4

10-5

10-6

10-7

10-8

discharge probability

effic

iency

Efficiency & discharge probability

High Voltage [V] high voltage [V]

350 450400 500 550 600 650

103

102

104

105105

gain

gain

energy resolution ~ 10%

55 FeAr + 10% C4H10

MicromegasMicromegas @ Compass@ Compass

420 V operating point~3-4.103 Gain

Large efficiency plateau > 40 V

σ = 9 ns

Time resolution : 9 nsSpatial resolution < 70 µm

σ =70 µ

Successful 2 years running !

300mm

420 V operating point~3-4.103 Gain

Large efficiency plateau > 40 Vσ = 9 ns

Time resolution : 9 ns

Spatial resolution < 70 µm

σ =70 µ

MicromegasMicromegas @ Compass@ Compass

Cathode

GEM 1

Anode

ED

EI

conversion & drift

induction

hole pitch140 µm Ø 75 µm

50µm

75µm

Gas Electron Multiplier GEM: principleGas Electron Multiplier GEM: principle F.Sauli NIM A 386 (1997) 531

Cathode

GEM 1

Anode

ED

EI

conversion & drift

induction

hole pitch140 µm Ø 75 µm

induction

conversion & drift

transfer 1

Cathode

GEM 1

Anode

GEM 2Et1

EI

ED

induction

conversion & drift

transfer 1transfer 2

Cathode

GEM 1

Anode

GEM 2GEM 3

Et1

EI

ED

Et2

50µm

75µm

Gas Electron Multiplier GEM: principleGas Electron Multiplier GEM: principle F.Sauli NIM A 386 (1997) 531

GEM PerformanceGEM Performance S. Bachmann et al, NIM. A479 (2002) 294

rate capability

gain

discharge probability

Compass GEM agingAr/CO2 70/30%

aging5.2*1011 particles/mm2

GEM @ GEM @ CompassCompass C. Altumbas et al, NIM A490(2002)177

time res.σ= 12.4 ns

spatial resolutionY strips

σ=52µm

spatial resolutionX strips

σ=47µm

• 3GEM foils, active area: 30.7 x 30.7 cm2

• 2D readout, 400 µm pitch• Radiation length 0.7% X0

x x

(80µm)dx

y

y

dy(340µm)

dh(50µm)

dx, dy, dh optimizedget the same signal on

x and y strip

copper strips InsulatorKapton

more infos: talk of B.Ketzer

GEM @ GEM @ CompassCompass C. Altumbas et al, NIM A490(2002)177

time res.σ= 12.4 ns

spatial resolutionY strips

σ=52µm

spatial resolutionX strips

σ=47µm

more infos: talk of B.Ketzer

GEM for GEM for LHCbLHCb MuonMuon StationStation D.Raspino et al; Proceedings ICATPP Como (2003)

Ar/CO2/CF4

(45/15/40)

rms = 4.5ns

counts

t0 [ns]

coun

ts

Ar/CO2/CF4 45/15/40Fast & Non-flammable

rate capability up to 0.5 MHz/cm2

efficiency > 96% in a 20 ns time binAging requirement:10 years LHCb ≡ 1.6 C/cm2

≡ 1.2 1012 part./mm2

The length of the detected signal corresponds to the electron drift time in the induction gap:•-> geometrical parameter •-> drift velocity

Multi-GEM Gas Photomultipier A. Breskin et al. The Weizmann Institute

reduced ion feedback less background

no photon feedback no backgroundfrom scintillating hν

thick photo cathode high Quantum EfficiencyCsI: RICH detectors

D. Mörmann et al., NIM A516(2004)315

D. Mörmann et al. NIM A 478 (2002) 230

50mV 10ns

gain 105, no photon feedback

Multi-GEM / CsI

more infos: talk of R.Chechik

• high gain >106 single photon sensitivity!• high 2D precision [0.1-0.2 mm] • fast signals good timing:~ 1.5ns for single photons~ 0.3ns for ~ 200 photons

• can operate at high magnetic fields

Multi-GEM Gas Photomultipier A. Breskin et al. The Weizmann Institute

more infos: talk of R.Chechik 50mV 10ns

gain 105, no photon feedback

Multi-GEM / CsI

CF4: windowless Cherenkov detectorssame gas in UV detector & radiator!(application: PHENIX-RHIC/BNL)

D. Mörmann et al. NIM A 478 (2002) 230

Multi-GEM Gas Photomultipier F.Sauli et al. GDD CERN

Single photoelectron cluster charge distribution:

Gas: 100% CH4Photo-cathode: CiI

Single electron pulse height spectrum for increasing UV light attenuation:

more infos: talk of L.Ropelewski

Sealed gaseous PMT for visible lightGas-sealed detector:- 3 Kapton GEMs- Semitransparent K-Cs-Sb photocathode

0%

5%

10%

15%

300 400 500 600

wavelength, nm

Qua

ntum

effi

cien

cy,

QE in transmissive mode Ar/CH4 95/5%

Wavelength [nm] 300 400 500 600

15%

10%

5%

0%

Qua

ntum

effi

cien

cy

Bialkali pc in Ar/CH4 (95/5)

13%

gain: 100-1000 in DC mode (ion feedback limit)>105 in ion-gating mode

1800 1900 2000 2100 2200 2300

0.1

1

10

100

250 260 270 280 290 300 310 320 330 340102

103

104

105

106

107

m430_gain_bi-alkali

gain

∆VGEM [V]

4-GEM gainAr/CH4 (95:5) 700torrgated operation with bi-alkali

singleelectrons

Vres [V]

pul

sehe

ight

>105

stable for at least1 month

more infos: talk of J.Veloso D. Mörmann et al. NIM A504(2003)93M.Balcerzyk et al. IEEE Trans. Nucl. Sci.NS50 (2003) 847

TPC with TPC with MPGDsMPGDs for a new LC Linear for a new LC Linear ColliderCollider

e+- e- collider with GeVs 500=

bunch train frequency: 5Hzbunch train: 1msec with 3000 bunches

Basic TESLA Detector Concept:Small high precision silicon vertex detectorLarge central tracking detector (TPC)High granularity calorimeterB-field up to 4 Tesla

Physics requirements for the LC Central Tracker: TPC•Space point resolution ~100µm•Momentum resolution δpt/pt

2 < 2x10-4/GeVc• Multi-track separation 2.3mm(r - φ),10mm(z)•Precise dE/dx < 5%• low radiation length X0 <3% more infos: talk of J.E.Augustin

MicromegasMicromegas TPC TPC FeliceFelice Micromegas FELICE group (LBL/DAPNIA-Saclay/LAL Orsay/IPN Orsay)

Ar/CF4 98/2%

Very thin amplification gap (50 to 100 Very thin amplification gap (50 to 100 µµm) m) => fast signals=> fast signals

Gain stability:a good potential for dE/dx

Gas studies :Gas studies : ArAr+2% CF+2% CF44 ωτωτ = 20 at B=4 T= 20 at B=4 Tvvee-- ~7 cm/~7 cm/µµs s atat 180 V/cm plateau 180 V/cm plateau

Natural ions feedback suppressionNatural ions feedback suppressionion feedback ion feedback in Ar/Cin Ar/C44HH1010 90/10% 90/10% 0,5%0,5%

((meshmesh::1000 LPI,1000 LPI, EEdd // EEaa= 200/70000)= 200/70000)ion feedback in Ar/CFion feedback in Ar/CF44 98/2 % 98/2 % 0.25%0.25%

(mesh: 1500LPI (mesh: 1500LPI EdEd / / EaEa= 200/70000)= 200/70000)

more infos: talk of P.Coals & poster V.Lepeltier 0 50 100 150 200 250 300 350field ratio

10-1

10-2

10-3

100

ion

feed

back

[%

]

feedback 2.5 %0

gain 330

Current measurement from X-ray source

V. Lepeltier et at, Proceedings IEEE, Protland (2003)

ionamplificat

driftfeedback E

EI ≈+

(for a mesh 1500lpI ~ 70mm pitch)

S. Kappler et al, IEEE Nucl. Sci. Symposium (Portland October 2003)more infos: talk of S.Roth

S.Roth et al, Proceedings ICCTP,Como 2003

I+/e-collected

B [ T ]

TPC with double GEM readout for 4T field)GEM GEM -- TPCTPC

MicromegasMicromegas and GEM in and GEM in RunningRunning & Future & Future ExperimentsExperiments

Micromegas:• COMPASS, NA48, n-TOF, TESLA….• CAST,HELLAZ,NOSTOS...• MEDICAL APPLICATIONS

GEM:• COMPASS, TESLA, MICE, TOTEM….• gas photomultiplier...• medical applications, astrophysics• Plasma imaging

Intrinsic ion feedback suppression

High granularity readout pattern in any shape

MPGD

109109CdCd

RefRef: A. : A. DelbartDelbart et al, NIM A461, p84 (2001)et al, NIM A461, p84 (2001)

Good energy resolution

fast signals &

high rate capability RefRef: F.: F.SauliSauli et al, NIM A, (2001)et al, NIM A, (2001)

Two-dimensional symmetry (no E×B effects)

Resistive Plate Chamber

RPCs historically used as trigger detector working in the streamer modeNew readout electronic allows to follow a new trend to work in the avalanche mode ATLAS & CMS will use their trigger

RPC in avalanche modeATLAS : ~3650m2 CMS : ~2000m2

RPCs with thin gas gap improved timing

Resistivity limits the rate capability, new developments open doors for high rate applications

Resistive Plate ChamberResistive Plate Chamber

Eclusters

Only avalanches that originate close to cathode grow big enough to give detectable signal

resistive electrode

resistive electrode

gas gap

HV

GND

readout strips

readout strips

Resistive Plate ChamberResistive Plate ChamberTrigger RPC; R. Cardarelli, R. SantonicoGas: CC22HH22FF44 / C/ C44HH1010 / SF/ SF66 -- 94.7 / 5 / 0.3 % Pic94.7 / 5 / 0.3 % up electrode x coordinate

2mm Bakelite ρ~1010Ωcm2mm gas gap E: 50kV/cm2mm Bakelite ρ~1010ΩcmPic up electrode y coordinate

Timing RPC; P. Fonte, V. PeskovGas: CC22HH22FF44 / i/ i--CC44HH1010 / SF/ SF66 -- 85/ 5 / 10 %85/ 5 / 10 %

HV: 10kV, E: 50kV/cm

Pic up electrode coordinate3mm glass ρ~1012ΩcmHigh rate: ρ~109Ωcm

2mm Aluminium electrode0.3mm gas gap E: 100kV/cm

HV: 3kV, E: 100kV/cm

Multigap RPC; C.WilliamsGas: CC22HH22FF44 / i/ i--CC44HH1010 / SF/ SF66 -- 90/ 5 / 5 %90/ 5 / 5 % Pic up electrode pads

0.4 mm glass plates ρ~1012Ωcm250µm gas gaps E: 100kV/cm

Pic up electrode padsHV: 13kV, E: 100kV/cm

RPC signal development Simulation RPC signal development Simulation MeasurementMeasurementTime Resolution depends on:• eff.Townsend coefficient (α − η)• Drift Velocity (v)

Efficiency depends on:• total gas gap

Efficiency for single gap:( Simulation for threshold 20fC )Trigger RPC ~ 95%Multigab PRC ~ 70%

Total Efficiency measured:Trigger RPC 1 gaps >97%Multigab PRC 10 gaps >99%

Time resolution:( Simulation )

Trigger RPC ~1nsMultigap PRC ~52psvt )(

28255.1ηα

σ−

=

Townsend coeff. α

Attachment coeff. η

Trigger RPC

Multigap RPCTiming-,

P. Fonte et al, NIM A449 (2000) 295

measurement simulation

W.Riegler,C.Lippmann,R.Veenhof NIM A 500(2003) 144

Trigger RPC for ATLAS Trigger RPC for ATLAS

Graphite electrodes

ground planes

Gas

Each ATLAS RPC Unithas two independentRPC layer!!

layer 2

layer1

y readout strips

x readout stripsBakelite plates foamHV x readout strips

PET spacers

y readout strips

High efficiency > 95%

Time resolution ∼ 1ns

Rate capability ∼ 100Hz/cm2

Resolution of 5-10 mm in the Y projection

Gas Gas mixturemixture:: Working in Working in AvalancheAvalanche ModeMode

CC22HH22FF44 / C/ C44HH1010 / SF/ SF66 -- 94.7 / 5 / 0.3 %94.7 / 5 / 0.3 %

2D 2D orthogonalorthogonal strip strip Readout :AllowsAllows toto measuremeasure x and y coordinatex and y coordinate

More than 1000 RPCs will be installed in the BARREL region and have to cover an area of 3650 m2

Francesco Conventi University of Naples, INFN and ROMA1, Atlas, presented at the RPC Workshop France 2003

Trigger RPC for ATLASTrigger RPC for ATLASTest beam at Cern (H8)

Efficiency > 95%

Cluster Size

Efficiency across the chamber

• X• Y

• X• Y

• X• Y

Paulo Iengo University of Naples, INFN, Atlas, presented at the RPC Workshop France 2003

MultigapMultigap RPCRPC

Timing depends on individual gaps(effective Townsent coeff. & drift velocity)

Efficiency depends on the sum of all gas gaps

Due to the superposition of the avalanches the pulse height spectrum is almost Gaussian.

The low signals in the distribution are dominated by value of Townsend coefficient α (αD ~ 30)

The large signals in the distribution are defined by saturation in avalanche growth due to space charge -> No tai le

Despina Hatzifotiadou et al., INFN Bologna, ALICE, presented at the RPC Workshop France 2003

MultigapMultigap RPCRPC

Timing depends on individual gaps(effective Townsent coeff. & drift velocity)

Efficiency depends on the sum of all gas gaps

Despina Hatzifotiadou et al., INFN Bologna, ALICE, presented at the RPC Workshop France 2003

MultigapMultigap RPC for the ALICE TOFRPC for the ALICE TOF

130 mmactive area 70 mm

M5 nylon screw to hold fishing-line spacer

honeycomb panel (10 mm thick)

external glass plates 0.55 mm thick

internal glass plates (0.4 mm thick)

connection to bring cathode signal to central read-out PCB

Honeycomb panel (10 mm thick)

PCB with cathode pickup pads

5 gas gaps of 250 micron

PCB with anode pickup pads

Silicon sealing compound

PCB with cathode pickup pads

Flat cable connectorDifferential signal sent

from strip to interface card

Mylar film (250 micron thick)

Double stack-> each stack has 5gaps => 10 gaps in total

Resistive plates ‘off-the-shelf’ soda lime glass 1012 MΩ/square

400 µm internal,500µm external glasswith resistive coating: 5 MΩ/square

Spacer: 250 µm nylon fishing lineReadout pads: 2.5x3.5cm2

Time resolution <50psEfficiency 99.9%Rate capability : up to 1kHz/cm2

Despina Hatzifotiadou et al, INFN Bologna, ALICE, presented at the RPC Workshop France 2003

High High RateTimingRateTiming RPCRPCActive area : 3x3 cm2 No spacers

TFE (R-134a ):CC22HH22FF44 / C/ C44HH1010Gas Mixture: TFE (R-134a) / SF6 = 90% / 10%

Resistive electrode : ρ ~ 4×109 Ω cm

ENSITAL® SD (ENSINGER) (Commercial material)

Gas in out

The time resolution remains essentially unchanged from:

2 kHz/cm2 to 25 kHz/cm2

with photon at a level around σ = 90 psmore infos: talk of P.Fonte

High High RateTimingRateTiming RPCRPC

For a given counting rate, an increase of the electric field doesn't considerably improve the time resolution.

The time resolution remains essentially unchanged from:

2 kHz/cm2 to 25 kHz/cm2

with photon at a level around σ = 90 psmore infos: talk of P.Fonte

RPC AgingRPC Aging

0

50

100

150

200

250

300

350

400

10/11/02 11/30/02 1/19/03 3/10/03 4/29/03 6/18/03 8/7/03 9/26/03 11/15/03

ρ (G

Ohm

cm

) a 2

0 °C

0

20

40

60

80

100

120

140

160

Inte

grat

ed C

harg

e (m

C/c

m2 )

gap 1 Argongap 2 Argongap 3 Argongap 4 Argongap 5 Argongap 6 ArgonGap1 eff. plateauGap2 eff. plateauGap3 eff. plateauGap4 eff. plateauGap5 eff. plateauGap6 eff. plateaumC/cm^2RH

ATLAS RPC resistivity evolutionATLAS Bakelite RPC aging test:Gas mixture: C2H2F4/C4H10/SF6 -96/3.5/0.5%Bakelite resistivity: increases Rate capability: drops with larger resistivityhumid flow: H2O vapor added to the gas mixture

sourceon

sourceoff

I [µA]

ALICE MPRC aging test:Gas mixture:C2H2F4/C4H10/SF6 - 90/5/5%Resistivity: unchanged Efficiency: no drop dark current: no increase

Resistive Plate ChamberResistive Plate Chamber

Avalanche mode operation is possible with modern low noise electronics and a step forward to realize reliable trigger detectors for big experiments

Multigap RPCs achieve efficiencies of 99.9% and very good timing resolution <50ps, application in Time Of Flight TOF detectors

High rate Timing RPC proved rate capability of up to 25kHz/cm2 and even higher should be possible

Gaseous detectors

Well known, proven technology providing high precision measurements and large area coverage.

Flexible devices, adaptable to many applications.

Non flammable gases have been developed to ensure safe operation of the detectors.

Modern, sensitive low noise electronics enlarges the range of applications

Accurate simulation tools available

Thank you for yourattention.

Photo: Alice TPC field cage by m.hoch


Recommended