+ All Categories
Home > Documents > ULTRAFAST HIGH-DENSITY SOT-MRAM: ENERGY-EFFICIENT ... · ULTRAFAST HIGH-DENSITY SOT-MRAM:...

ULTRAFAST HIGH-DENSITY SOT-MRAM: ENERGY-EFFICIENT ... · ULTRAFAST HIGH-DENSITY SOT-MRAM:...

Date post: 12-Feb-2020
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
19
ULTRAFAST HIGH-DENSITY SOT-MRAM: ENERGY-EFFICIENT COMPUTING AND SOT SWITCHING USING TOPOLOGICAL EFFECTS X. Li, C. Bi, and S. X. Wang Center for Magnetic Nanotechnology Dept. of Materials Science and Eng. Dept. of Electrical Engineering Stanford University Sept. 20, 2018
Transcript
Page 1: ULTRAFAST HIGH-DENSITY SOT-MRAM: ENERGY-EFFICIENT ... · ULTRAFAST HIGH-DENSITY SOT-MRAM: ENERGY-EFFICIENT COMPUTING AND SOT SWITCHING USING TOPOLOGICAL EFFECTS X. Li, C. Bi, and

ULTRAFAST HIGH-DENSITY SOT-MRAM:ENERGY-EFFICIENT COMPUTING

AND SOT SWITCHING USING TOPOLOGICAL EFFECTS

X. Li, C. Bi, and S. X. Wang

Center for Magnetic NanotechnologyDept. of Materials Science and Eng.

Dept. of Electrical EngineeringStanford University

Sept. 20, 2018

Page 2: ULTRAFAST HIGH-DENSITY SOT-MRAM: ENERGY-EFFICIENT ... · ULTRAFAST HIGH-DENSITY SOT-MRAM: ENERGY-EFFICIENT COMPUTING AND SOT SWITCHING USING TOPOLOGICAL EFFECTS X. Li, C. Bi, and

Memories for Energy Efficient Computing

2

• No existing technology combines high write efficiency, speed and density• STT-RAM in various stages of production; SOT-RAM n MeRAM in R&D

Xiang Li PhD, 2018

nsSOT-RAM

Page 3: ULTRAFAST HIGH-DENSITY SOT-MRAM: ENERGY-EFFICIENT ... · ULTRAFAST HIGH-DENSITY SOT-MRAM: ENERGY-EFFICIENT COMPUTING AND SOT SWITCHING USING TOPOLOGICAL EFFECTS X. Li, C. Bi, and

Magnetoresistive random access memory (MRAM): 2 vs 3 terminals

3

Read/Write line

MTJRL

FL

Tunnel barrier

Read line

RL

FL

Write lineSOT layer

STT SOT

• Tunnel magnetoresistance (TMR) ratio:

100×−

=P

PAP

RRRTMR

P: Parallel state, AP: Anti-parallel state

Page 4: ULTRAFAST HIGH-DENSITY SOT-MRAM: ENERGY-EFFICIENT ... · ULTRAFAST HIGH-DENSITY SOT-MRAM: ENERGY-EFFICIENT COMPUTING AND SOT SWITCHING USING TOPOLOGICAL EFFECTS X. Li, C. Bi, and

Spin Transfer Torque (STT) MRAM

4

Electron flow

𝑚𝑚r

𝑚𝑚f

𝐼𝐼c0 =2𝑒𝑒ℏ

1𝜂𝜂𝛼𝛼𝑀𝑀𝑠𝑠𝑉𝑉𝐻𝐻keff

perp.

Gilbert damping Energy barrier

Critical current:

𝜂𝜂: spin-transfer efficiency, 𝑀𝑀𝑠𝑠: Saturation magnetization, V: Volume of free layer[1] B. Dieny, Introduction to Magnetic Random-Access Memory. Wiley-IEEE Press, 2017.

Trade-off between 𝛼𝛼 and 𝐻𝐻keffperp.[1]:

Co/Pt, Co/Pd NiFe, FeB𝐻𝐻keffperp. Strong Weak

𝛼𝛼 High Low

• Challenging to achieve low critical current and high retention

ref.

free

Page 5: ULTRAFAST HIGH-DENSITY SOT-MRAM: ENERGY-EFFICIENT ... · ULTRAFAST HIGH-DENSITY SOT-MRAM: ENERGY-EFFICIENT COMPUTING AND SOT SWITCHING USING TOPOLOGICAL EFFECTS X. Li, C. Bi, and

Spin-Hall Effect & SOT-MRAM

HM (Heavy metal)FM (Ferromagnetic metal)

Electron flow

z

xy𝑚𝑚f

𝜏𝜏SH ∝ 𝐽𝐽in𝑚𝑚f × 𝑚𝑚f × �𝜎𝜎 �𝜎𝜎: direction of spin (∥ �𝑦𝑦)

𝐼𝐼c0 =2𝑒𝑒ℏ

1𝜃𝜃SH

𝑀𝑀𝑠𝑠𝑉𝑉𝐻𝐻keffperp.

2−𝐻𝐻x

2

Critical current:

• Strong 𝐻𝐻keffperp. material can be selected without increasing 𝐼𝐼c0

Spin-Hall angle

5

𝐻𝐻𝑥𝑥: In-plane external field, 𝑀𝑀𝑠𝑠: Saturation magnetization, V: Volume of free layer

Page 6: ULTRAFAST HIGH-DENSITY SOT-MRAM: ENERGY-EFFICIENT ... · ULTRAFAST HIGH-DENSITY SOT-MRAM: ENERGY-EFFICIENT COMPUTING AND SOT SWITCHING USING TOPOLOGICAL EFFECTS X. Li, C. Bi, and

Three-Terminal SOT-MRAM

Q. Hao, Phys. Rev. Appl., vol. 3, pp.034009, March 2015

Conventional structure

Memory Cell area F2

DRAM 6

STT-MRAM 6

3-T Spin-Hall MRAM 12 - 18

• Memory cell area too large for 3-terminal devices6

Page 7: ULTRAFAST HIGH-DENSITY SOT-MRAM: ENERGY-EFFICIENT ... · ULTRAFAST HIGH-DENSITY SOT-MRAM: ENERGY-EFFICIENT COMPUTING AND SOT SWITCHING USING TOPOLOGICAL EFFECTS X. Li, C. Bi, and

Two-Terminal SOT-MRAM

7

𝐽𝐽in max. =𝜋𝜋𝑑𝑑MTJ2

4𝑤𝑤Ta(𝑡𝑡Ta+𝑡𝑡CoFeB)𝐽𝐽out

𝐽𝐽in 𝐽𝐽out

𝑤𝑤Ta

𝑡𝑡Ta𝑡𝑡CoFeB

Spin-Hall effect ∝ In-plane current density 𝑑𝑑MTJ

• Key to realizing high 𝐽𝐽in is the alignment of MTJ on Ta wire• No trade-off between critical current and retention• Cell area F2 = 6

IBM patent app US20140264511A1 (2014)

Page 8: ULTRAFAST HIGH-DENSITY SOT-MRAM: ENERGY-EFFICIENT ... · ULTRAFAST HIGH-DENSITY SOT-MRAM: ENERGY-EFFICIENT COMPUTING AND SOT SWITCHING USING TOPOLOGICAL EFFECTS X. Li, C. Bi, and

Two-Terminal SOT Device Images

8• 110 nm MTJ pillar on 220 nm Ta wire 𝐽𝐽in~14𝐽𝐽out

Bottom electrode lead 1

Top electrode lead 1

Bottom electrode lead 2

Top electrode lead 2

Al2O3 Passivation layer

Page 9: ULTRAFAST HIGH-DENSITY SOT-MRAM: ENERGY-EFFICIENT ... · ULTRAFAST HIGH-DENSITY SOT-MRAM: ENERGY-EFFICIENT COMPUTING AND SOT SWITCHING USING TOPOLOGICAL EFFECTS X. Li, C. Bi, and

Full-Stack Structure of MTJ

MgO(1.2)

CoFeB(1.3)

Ru (0.85)

Ta(0.4) Co (0.4)

Ta (3.8)

Pd (0.6)

Pd (0.6)Co (0.3)Ru (1.5)

x3

CoFeB(1.0)

Sub.

Co (0.4)

Co (0.4)

9

unit: nm

Page 10: ULTRAFAST HIGH-DENSITY SOT-MRAM: ENERGY-EFFICIENT ... · ULTRAFAST HIGH-DENSITY SOT-MRAM: ENERGY-EFFICIENT COMPUTING AND SOT SWITCHING USING TOPOLOGICAL EFFECTS X. Li, C. Bi, and

Full-Stack Structure of MTJ

MgO(1.2)

CoFeB(1.3)

Ru (0.85)

Ta(0.4) Co (0.4)

Ta (3.8)

Pd (0.6)

Pd (0.6)Co (0.3)Ru (1.5)

x3

CoFeB(1.0)

Sub.

Co (0.4)

Co (0.4)

Sub.

orMgO

Ru

Ru

MgO

Source of spin-Hall effectFree layerTunnel barrier

Pinned layer

Capping layer

Reference layer

• Reduces stray field on free layer Increases stability

Antiferromagnetic coupling spacer

10

unit: nm

Page 11: ULTRAFAST HIGH-DENSITY SOT-MRAM: ENERGY-EFFICIENT ... · ULTRAFAST HIGH-DENSITY SOT-MRAM: ENERGY-EFFICIENT COMPUTING AND SOT SWITCHING USING TOPOLOGICAL EFFECTS X. Li, C. Bi, and

0 1 2 3 4 50

200

400

600

800

1/wTa [1/um]

Crit

iacl

cur

rent

[uA]

Underlayer Width Dependence of Critical Current

11

o MTJ diameter: 110 ± 5 nmo Pulse current duration: 10 mso External field: 100 Oeo Reference layer magnetization:

STT assists spin-Hall

• Critical current is x3 smaller than pure STT device under external field

Spin-Hall torque ∝ 𝐽𝐽in ∝I

𝑤𝑤Ta

Purely STT

Nature Electronics, 2018

Page 12: ULTRAFAST HIGH-DENSITY SOT-MRAM: ENERGY-EFFICIENT ... · ULTRAFAST HIGH-DENSITY SOT-MRAM: ENERGY-EFFICIENT COMPUTING AND SOT SWITCHING USING TOPOLOGICAL EFFECTS X. Li, C. Bi, and

Critical current density vs pulse width

12

Bit switching energy estimates:

~250 fJ @ 110 nm

Scaling down possibility:

~10 fJ @ 22 nm ~0.5 fJ @ 5 nm

Nature Electronics, 2018

Page 13: ULTRAFAST HIGH-DENSITY SOT-MRAM: ENERGY-EFFICIENT ... · ULTRAFAST HIGH-DENSITY SOT-MRAM: ENERGY-EFFICIENT COMPUTING AND SOT SWITCHING USING TOPOLOGICAL EFFECTS X. Li, C. Bi, and

Energy-Efficient Computing Example

13

Nature Electronics 1 (7), 398 (2018).

Page 14: ULTRAFAST HIGH-DENSITY SOT-MRAM: ENERGY-EFFICIENT ... · ULTRAFAST HIGH-DENSITY SOT-MRAM: ENERGY-EFFICIENT COMPUTING AND SOT SWITCHING USING TOPOLOGICAL EFFECTS X. Li, C. Bi, and

Topological Insulators and SOT Switching

14

NATURE PHYSICS, 5 (6), 438, 2009

NATURE, 511(7), 449, 2014

Page 15: ULTRAFAST HIGH-DENSITY SOT-MRAM: ENERGY-EFFICIENT ... · ULTRAFAST HIGH-DENSITY SOT-MRAM: ENERGY-EFFICIENT COMPUTING AND SOT SWITCHING USING TOPOLOGICAL EFFECTS X. Li, C. Bi, and

Topological Insulators and SOT Switching

15Nature Materials, 17(9), 800–807, 2018

Page 16: ULTRAFAST HIGH-DENSITY SOT-MRAM: ENERGY-EFFICIENT ... · ULTRAFAST HIGH-DENSITY SOT-MRAM: ENERGY-EFFICIENT COMPUTING AND SOT SWITCHING USING TOPOLOGICAL EFFECTS X. Li, C. Bi, and

Topological Insulators and SOT Switching

16

Materials Resistivity ReferencesTopologicalinsulator SmB6 300 µΩ·cm

J. Yong et al., Appl. Phys. Lett. 105,222403 (2014)

Topologicalsemimetal TaAs 200 µΩ·cm

C. Zhang et al., Phys. Rev. B 95,085202 (2017)

Topologicalinsulators BiSex 1792 µΩ·cm

A. R. Mellnik et al., Nature 511, 449(2014)

BiTex 2000 µΩ·cm D. Qu et al., Science 329, 821 (2010)Heavymetals W 260 µΩ·cm

C. F Pai et al., Appl. Phys. Lett. 101,122404 (2012)

Ta 190 µΩ·cm L. Liu et al. Science 336, 555 (2012)

Resistivity of representative SOT materials at room temp.

Page 17: ULTRAFAST HIGH-DENSITY SOT-MRAM: ENERGY-EFFICIENT ... · ULTRAFAST HIGH-DENSITY SOT-MRAM: ENERGY-EFFICIENT COMPUTING AND SOT SWITCHING USING TOPOLOGICAL EFFECTS X. Li, C. Bi, and

Conclusions

17

• Fabricated and demonstrated the first two-terminal spin-orbit torque (SOT) MRAM cells. SOT devices can switch much faster (~1 ns) than pure STT devices.

• Critical switching current of SOT device is x3 smaller than pure STT device of the same geometry under external field

• This device is free from the trade-off between 𝛼𝛼 and 𝐻𝐻keffperp. (trade-

off between critical current and retention)

• Topological materials promise to deliver even more efficient switching.

• SOT-MRAM is well suited for energy-efficient ultrafast computing.

Page 18: ULTRAFAST HIGH-DENSITY SOT-MRAM: ENERGY-EFFICIENT ... · ULTRAFAST HIGH-DENSITY SOT-MRAM: ENERGY-EFFICIENT COMPUTING AND SOT SWITCHING USING TOPOLOGICAL EFFECTS X. Li, C. Bi, and

Acknowledgements

18

Page 19: ULTRAFAST HIGH-DENSITY SOT-MRAM: ENERGY-EFFICIENT ... · ULTRAFAST HIGH-DENSITY SOT-MRAM: ENERGY-EFFICIENT COMPUTING AND SOT SWITCHING USING TOPOLOGICAL EFFECTS X. Li, C. Bi, and

Conclusion

Microfluidics allow reaction limited flow regime for protein analyte, and enables larger particles that improve assay performance by an order of magnitude.

The design and operation of magneto-nanosensors are intricate: sensor-particle interaction, and location of MNP must be carefully considered.

Magneto-nanosensors enable a number of killer applications, including ultrasensitive protein interaction assays, cancer early detection, and mobile health.


Recommended