+ All Categories
Home > Documents > WE2.L09 - DESDYNI LIDAR FOR SOLID EARTH APPLICATIONS

WE2.L09 - DESDYNI LIDAR FOR SOLID EARTH APPLICATIONS

Date post: 12-Jul-2015
Category:
Upload: grssieee
View: 609 times
Download: 2 times
Share this document with a friend
Popular Tags:
12
DESDynI-Lidar for Solid Earth Applications J. Sauber 1 , M. Hofton 2 , R. Bruhn 3 , S. Luthcke 1 , B. Blair 1 1 NASA Goddard Space Flight Center 2 University of Maryland 3 University of Utah Mahalo to Paul Rosen & Jon Ranson
Transcript
Page 1: WE2.L09 - DESDYNI LIDAR FOR SOLID EARTH APPLICATIONS

DESDynI-Lidar for Solid Earth Applications

J. Sauber1, M. Hofton2, R. Bruhn3, S. Luthcke1, B. Blair1

1NASA Goddard Space Flight Center2 University of Maryland

3 University of Utah

Mahalo to Paul Rosen & Jon Ranson

Page 2: WE2.L09 - DESDYNI LIDAR FOR SOLID EARTH APPLICATIONS

Simulations of DESDynI Lidar performance in Alaska:

-Can topography profiles from satellite Lidar advance seismotectonic process studies?

• “Bald Earth” observations, 10-1 to 100 meters• 25 m near contiguous & global georeferenced elevation profiles

-Could we use DESDynI-Lidar to constrain coseismic uplift as per DESDynI Science Definition and DESDynI Applications documents?• Measured coseismic offset from a 1899 M=8 event •Alternate approaches for optimizing DESDynI-Lidar coseismic information

DESDynI-Lidar + InSAR fusion for Solid Earth Applications--How could fusion of Lidar-derived elevations into SAR processing be helpful?

Page 3: WE2.L09 - DESDYNI LIDAR FOR SOLID EARTH APPLICATIONS

Alaska

G of A

Glaciated seismotectonic plate boundaryin southern Alaska

How often do 1899 + 1964 happen at thesame time?

Is all the uplift due to earthquakes?

Page 4: WE2.L09 - DESDYNI LIDAR FOR SOLID EARTH APPLICATIONS

Thick coastal forest and brush mask important aspects of the geomorphology on aerial photographs, standard DEM, and C-band synthetic aperture radar (SAR) images.

Ground

Variable Canopy H

Right: Example ICESat Waveform(26 m)

Above: Photo of marine terraces from coastal region west of Icy Bay (and the Malaspina Glacier) Alaska, 1899 M=8 earthquake aftershock zone

*

ICESat penetrates canopy butdensity of obs. not optimal for SE processes

BEARS!

Sullivan Anticline

Page 5: WE2.L09 - DESDYNI LIDAR FOR SOLID EARTH APPLICATIONS

Topographic map with marine terraces (I-IV) and ground tracks of one pass of DESDynI-Lidar with 5 beams

12

3

45

km

m

III

III

IV

25m footprint30m spacing along track850m between beams

•DESDynI Lidar Free-Flyer orbital parameters (Jan. 2010):

-Altitude: 390 km

-Inclination: 97o

-5 beam configuration 1-5

-10 m post-positioning,(important for fusion with otherremote sensing data)

Page 6: WE2.L09 - DESDYNI LIDAR FOR SOLID EARTH APPLICATIONS

Construction of DESDyn-I Lidar waveforms from NCALM point cloud returns:

Ground

Above: WGS84 elevation versus waveform amplitude for a simulated waveform from a footprint located along track #1. The returns between the highest and lowest elevation could be due to a variable ground surface (G) or NCALM lidar returns from low-lying brush.

•Lidar waveform parameters:-laser pulse width, 9ns-laser footprint diameter 25m, (1/e2)-waveform vertical resolution 15cm -threshold above simulated

background noise

•Use NCALM “last stop” point cloudreturn from “Sullivan” areaacquired as part of the NSF STEEP project.

•For complex waveforms useeither centroid or search algorithm to estimate ground return

?

(G)

Page 7: WE2.L09 - DESDYNI LIDAR FOR SOLID EARTH APPLICATIONS

Elevation profile (Centroid in blue) along Track #2,3,4 as a function of latitude with the highest (+) and lowest ( ) within footprint elevation above the noise threshold.

Track 2 I

II

III

IV

Co

ast

Track 3

Co

ast

IV

III

Track 4

Co

ast

IV III

•Large offsets between individual terrace levels as well as the slope trends across terraces in a common global reference frame enables more robust comparisons.

•Offsets become more muted to the west

•Individual terraces occur at lower elevations on the more westerly tracks

Page 8: WE2.L09 - DESDYNI LIDAR FOR SOLID EARTH APPLICATIONS

The dashed red line (----) indicates the number of points needed to have 1 return per m2.

Number of NCALM returns in 25 meter footprint as a function of latitude along Track #4.

Page 9: WE2.L09 - DESDYNI LIDAR FOR SOLID EARTH APPLICATIONS

Measuring coseismic displacement in large earthquakes:

An Interferogram of recent Northern Mexico EQ based on ALOS PALSAR (M. Wei and D. Sandwell). One color cycle or fringe is 11.6 cm of line of sight deformation

Measurement of near fault uplift/subsidence with Lidar could provide additional constraints on surface expression of slip in an earthquake, especially for upper crustal faults in a SAR “hostile” environment.

SO, could we actually measure coseismic offsets with one acquisition of DESDynI of Lidar?

Page 10: WE2.L09 - DESDYNI LIDAR FOR SOLID EARTH APPLICATIONS

Co

ast

IVIII

Track #4

C=G

G?

C

G?C

1899

Page 11: WE2.L09 - DESDYNI LIDAR FOR SOLID EARTH APPLICATIONS

Use of SAR + Lidar ground control points (GCPs): Lessons learned from

Barrow, Alaska study (Atwood et al., 2007):

Multi-Mosaic stage (DEM creation): ICESAT was useful for distinguishing most accurate DEMS because of the vertical accuracy. DESDynI will additionally provide denser along track and across track sampling across DEMs.

Baseline Refinement: •ICESat (55-85m footprint) was useful for ERS-1/2 baseline refinement because elevation were accurate (<10 cm) and topography was modest. •The smaller DESDynI footprint (25 m) with near contiguous along track data and small across track distance would provide denser spatial sampling across an individual SAR scene.• The accurate and denser distribution of elevations (GCPs) could be especially useful outside of SRTM window at high latitudes.

Flow chart depicting InSAR processing with ICESat control to produce a DEM. Arrows on right represent steps where ICESat-derived elevations are employed for ground control. The processing steps shown in (a) are applied to each of the three ERS image pairs. The processing steps in (b) pertain to mosaicking of the resulting three DEMs into a single composite DEM.

Page 12: WE2.L09 - DESDYNI LIDAR FOR SOLID EARTH APPLICATIONS

Lessons Learned and Future work:

• A ground return search algorithm is under development and testing. An advantage of full waveform Lidar returns (over first and last returns) is that is it easier to associate returns with known vegetation structure of a region. We anticipate that the moderate footprint DESDynI Lidar waveforms will be useful for studying seismotectonic processes.

•Coseismic displacements of > 1 m can be measured with one acquisition set and could be used to guide further acquisitions. Based on our previous studies using ICESat elevation profiles, however, DESDynI-Lidar profiles with an earlier InSAR derived DEM will enable recovery of a common mode uplift/subsidence signal.


Recommended