+ All Categories
Home > Documents > Westfalia Separator - Separators for the Diary Industry

Westfalia Separator - Separators for the Diary Industry

Date post: 04-Nov-2015
Category:
Upload: serbianfreeman
View: 92 times
Download: 8 times
Share this document with a friend
Description:
Study about GEA separators for food industry

of 44

Transcript
  • Mechanical SeparationDivision

    Westfalia SeparatorFood Tec

    Separatorsfor the Dairy Industry

  • 4 1. Dairy Technology Today 6 2. Factors Affecting Creaming of Whole Milk

    6 2.1 FactorsAffectingMilk Production

    6 2.1.1 Breedofcow,climate feedingconditions

    6 2.1.2 Mechanicalstressinmilk production

    9 2.2 FactorsAffectingMilk Processing

    9 2.2.1 Transportingthewholemilk tothedairy

    9 2.2.2 Milkreception,wholemilkstore

    10 2.2.3 Ageofthemilk

    11 2.2.4 Qualityofthewholemilk

    15 2.2.5 Sizedistributionofthefatglobules

    15 2.2.6 Effectofair inthemilkon separationefficiency

    18 2.2.7 Separationtemperature

    18 2.2.7.1 Warmmilkseparation

    20 2.2.7.2 Coldmilkseparation

    20 2.2.8 Fatcontentinthecream

    21 2.2.9 Throughputoftheseparator

    22 2.2.10 Designcriteriaforthemilk processingline

    22 2.2.10.1Balancetank

    23 2.2.10.2Pumps

    23 2.2.10.3Pipelinesystem

    23 2.2.10.4Plateheatexchangers

    24 2.2.10.5Separatorsettings

    25 2.2.10.6 Installationof coldmilkseparators

    27 2.2.11 Cleaning-in-place(CIP)

    Contents

  • 3WestfaliaSeparatorFoodTec

    28 3. Milk Separators

    28 3.1 TypeofConstruction

    28 3.1.1 Separatorswithsolid-wallbowl

    29 3.1.2 Separatorswithself-cleaningbowl

    29 3.2 WarmMilkSeparators

    29 3.2.1 General

    30 3.2.2 SkimmingseparatorwithHydroSoft feedsystem

    30 3.3 ColdMilkSeparators

    31 3.4 HydraulicSystemforAutomatic BowlEjections

    33 3.5 SeparatorTypesand FeedCapacities34 4. Special Processes 34 4.1 ButtermilkSeparation

    34 4.1.1 Theproductasacriterionforselecting therightseparatormodel

    34 4.1.2 Processparameters

    35 4.1.3 Separationefficiency

    36 4.2 WheySeparation

    36 4.2.1 Criteriafordesigningawhey separationline

    36 4.3 WheyConcentrateSeparation

    36 4.4 RetentateSeparation

    37 4.5 CreamConcentration

    37 4.5.1 Concentrationoflowcream contentto4050percent

    37 4.5.2 Increasingtheconcentration of40percentcream38 5. Measuring Methods for Determining the Residual Fat Content of the Skim Milk 40 6. Automatic Fat Standardising Installations

  • Today,thereareapplicationsforseparators inallareasofmilkprocessingsuchas:

    Warmmilkseparation Coldmilkseparation Wheyseparation Buttermilkseparation Milkandwheyclarification Milkstandardisation Andtheremovalofbacteriafrom

    milkanddairyproducts

    Theprocessingofcertainproductssuchas:

    Quark(softcheese) Doublecreamcheese Butteroil Low-fatwheypowders,suchasWPCs Optimisationinproductionoflactose Recoveryofsinglefractionssuchasfatsandproteinsisnolongerpossiblewithouttheaidofspeciallydesignedseparators

    All the separators represent the state-of-the-artincentrifugeconstruction.Theycanbeoperatedcontinuouslyandofferthehighestlevelofproductsafetyandefficiency.

    Continuedrationalisationandautomationindairieshasmadeitnecessaryforengineerstomoderniseoldprocessesanddevelopnewones.Centrifugalseparatorsareplayingan importantpart in thisrethinkingprocess.

    Theadvancedtechnologicalsophisticationofsepa-ratorsenablestheupdatingofprocessestomeetmodern economic demands. Todays separa-tor installations, incorporatingcleaning-in-placesystems,canbeoperated24hoursaday.

    Westfalia Separator HyVOL PROPLUS separa-tors with integrated Protein-Plus-System

    When it comes tomakingdecisions aboutnewinvestments,WestfaliaSeparatoroffersanewstand-ardinmilkprocessing.

    WestfaliaSeparatorHyVOLPROPLUSbrands: thenewseparatorgenerationthatcombines theex-cellent featuresof theHyVOL separatorswithPROPLUS,theProtein-Plus-System.Thebenefitsaresubstantiallyincreasedproteinyieldandsignificantcostsavings.

    1. Dairy Technology Today

  • Anewgenerationmilk

    separatorwith

    SoftStreaminletsystem,

    typeMSE500-01-777

    5

    WestfaliaSeparator

    FoodTec

    Fastpaybacktimesandadditionalprofitfromtherawmilkusedthroughouttheentirelifecyclearetheresultsyoucanexpectrightfromtheoutset.

    WestfaliaSeparatorHyVOL PROPLUSseparatorsgiveyouthefollowingbenefits:

    PROPLUS,theProtein-Plus-System Increasedproteinyield,reducedwatercon-

    sumption,reductionofthesolidsvolume Absoluteavailability

    Highthroughputs,highefficiency,high economy,auniversalsolution

    Absoluteintegration Flexibleprocessing,highproductquality

    Absoluteproductprotection Gentlefeedsystem,gentleproducttreatment

    Absoluteintelligence Easyoperation,uniformsolidsdischarge, optimumyield

    Absoluteeconomy Lowmaintenancecosts,lowoperatingcosts, lowwaterconsumption,lowenergyrequire-

    ment Absoluterobustness

    Problem-freeoperation,service-friendly, longservicelife

  • 6WestfaliaSeparator

    FoodTec

    Nexttoprotein,milkfatisthemostvaluablecom-ponentofthemilk.Basedonthedrymattercon-tent,themilkfatconstitutesabout30percentofthemilk.

    Thefollowinginterdependentcriteriaandvariablesareofgreatimportance:

    Nutritivevalue Variables:breedofcow,lactationtime, climateandfeeding

    Physicalproperties Variables:mechanicaland heattreatment

    Chemicalproperties Variables:enzymereactions, bacterialinfluence

    Economicimportance Variables:efficiencyofmechanical separationprocesses

    2. Factors Affecting Creaming of Whole Milk

    Inadditiontoexplainingthedesignpossibilitiesofcentrifugalseparationtechnologyasappliedtotheseparationofwholemilk,thisdocumentdeals inparticularwithanumberofimportanttechnicalandengineeringparametersthathaveadecisiveinflu-enceontheresidualfatcontentintheskimmilk.

    2.1 Factors affecting milk production 2.1.1 Breed of cow, climate, feeding conditions

    Apartfromanumberofindividualtestswhichdonotrepresentanacceptablecrosssection,insuffi-cienttestshavebeencarriedouttoprovideindis-putableevidenceoftheeffectoftherelationshipbetweenthementionedfactorsontheseparabilityof thewholemilk. Itcanbesaid,withcertainty,thatseasonaldifferencesintheseparabilityofthewholemilkdooccur.Theseseasonally-dependentdeviationscanvaryinintensitydependingonthedifferencesintheamountsofmilkdelivered.Devia-tionsoccurringinthenutritivevalueofthefeedtypecompositionandlittleornocontrolofthelactationperiodscanleadtovariationsintheamountofmilkdelivered.However,theeffectonseparabilityalsodependsondifferencesinthesizesofthefatglob-ulesdispersedinthewholemilk.

    Figures3and4areextremeexamplesofdifferencesintheamountsdeliveredwhicharetypicalforthedairyindustryinNewZealand.

    2.1.2 Mechanical strain in milk production

    Thevarioussequentialprocessesthatarepartofmilkproductiongreatlyinfluencetheseparabilityofthewholemilk.

    Fig.3

    Proportionofdeliveredmilk

    inanannualcycle

    0 5 10 15 20 25 30 35 40 45 50

    1000

    ton

    nes 260

    234

    208

    182

    156

    130

    104

    78

    52

    26

    0

    Calendarweek

    Wholemilkaverage

    values:

    Fat: 3.75.3%

    Protein:3.34.3%

  • 7WestfaliaSeparator

    FoodTec

    Theseinclude:

    Preservingextractionofthemilk Transportofthemilkthroughthe

    milkingplant.Caremustbetaken toseparatetheairnecessaryfor transportofthemilkasmuch

    aspossiblefromthemilkitself

    Necessarytoachievethisare:

    Lowvacuumlevel Minimalinclinesinthepipelinesystem Avoidanceofleaksinthepipelinenetwork Adequatepipelinecross-sectionsforthe

    capacityoftheplant

    Ascanbeseenfromfigures1and2,theairusedtotransportthemilkisworkedintothemilkifpipelinecross-sectionsaresmall.

    Inthecaseoflargecapacitycross-sections3and4,theairhasadequatespaceabovethemilk.

    Fig.5

    Diagramofdifferentmilkline

    diametersforthesamemilk

    flow28/301

    38/402

    50/523

    66/704

    Fig.4

    Sizedistributionofthefat

    globulesinanannualcycle

    12,000

    8000

    4000

    0.5

    0.75 1.0

    1.25 1.5

    1.75 2.0

    2.25 2.5

    2.75 3.0

    3.25 3.5

    3.75 4.0

    4.25 4.5

    Fatglobulediameter[mm]

    Skimmilkaveragevalues:1April-Junex=0.04in%byvol.(Gerber*)2November-Februaryx=0.05in%byvol.(Gerber*)*Spun5timesintheskimmilkbutyrometer

    Volumeun

    itsper[

    ml]

    1

    2

  • FoodTec8

    WestfaliaSeparator

    Ifoptimumtransportofthemilkistobeachieved,theabsolutevacuumlevelmustbeadjustedsothatit is commensuratewith the energy consumed.Fig.6givesthedifferentpermissiblevacuumrangesforpipelineandbucketmilkingplants,aswellastherelevantpipelinediameters.

    Coolingof themilkon the farm isalsoofgreatimportance.

    Here,attentionmustbepaid,amongotherthings,tothefollowing:

    Avoidanceoffoaming,particularlywhen themilkfromthefirstmilkingisfedinto largerefrigeratedtanks

    Fig.6

    Diagramofthe

    permissiblevacuum

    levelsinmilkingplantsNotpermissible

    70/66 50/4452/50

    40/3440/38

    1in 11/2in

    Pipelinediameter

    Vacuum

    level[kPa]

    50

    48

    46

    42

    40

    permissible permissible

    Pipelineplant Bucketmilkingplant

    Fig.7

    Qualitycurveofthefree

    fattyacidcontentandfree

    fattyacidsaftermechanical

    strainofthemilkorcream

    0 10 20 30 40 50 60

    Freefattyacids

    Centrifugableorextractablefreefatcontent

    TemperatureinC

    Freefatcon

    tent

    Freefattyacids

    Largetemperaturefluctuationsbythermostaticcontrolwhichhaveswitchingintervalsofe.g.34C.

    Incomparison,switchingintervalsofapprox.1Ccanbeachievedwithelectronicthermo-stats.Thishelpstoreducethedangeroficingofthemilk,particularlywiththemilkfromthefirstmilking,e.g.bysettingthecoolingtempe-ratureto3C

    Enteringtheareaofcriticaltemperature

    AccordingtoProf.Kessler,Weihenstephan,particu-larlyhighlevelsoffreefat(FF)canbeproducedbymechanicalstrain,e.g.bythestirringprocess, inthetemperaturerangeof2030C.Ascanbeseenfromthediagram,asmalloptimumareaoccursintheproductionoffreefattyacids(FFA)inthetem-peraturerangeof15C.

  • 9WestfaliaSeparator

    FoodTec

    Fig.8

    Coolingthemilk

    onthefarm

    Fig.8shows that in factonly in thecaseof thefirstmilking is there danger of damage to thefat,as thesecondandallothermilkingsdonotenterthecriticaltemperaturerangeowingtotheinstantaneously occurringmixing temperature.

    2.2 Factors affecting milk processing

    2.2.1 Transporting the whole milk to the dairy

    Caremustbetakenwhentransportingthewholemilkthatthecoolingchainisnotbroken.Conse-quently themilk transporting vehiclesmust beequippedtosuitthetransportingtimesandclimaticconditions.

    Themotionoftankvehiclesonlypartiallyfilledcaus-esturbulenceintheliquid,andthiscandamagethemilk.Correctcleaningofthetank(CIP)isessential.

    2.2.2 Milk reception, whole milk store

    Threeparticularlyimportantconditionsmustbemetwithrespecttotheintakeofthemilkatthedairyif theseparabilityof thewholemilk isnot tobeimpaired.

    First of all, it is important to avoid asmuch aspossibletheentrainmentofextraneousairduringemptyingofthemilktruckandfillingofthetanks.Thetypeanddesignoftheagitatorcanalsoaffectthemilk.

    Normallyitisnotpossibletocompletelyavoidtheentrainmentofair inthemilk.Consequently,thewholemilkshouldbegivensufficienttimetode-gasbeforefurtherprocessing.Forthisreason,thewholemilkshouldnotbefeddirectlyfromthemilktruckintotheprocessingline.

    It isalso importanttoensurethateachpumpingprocessemployedforconveyingthemilkhasopti-mumhydraulicefficiency. If the feedconditionsare subject to fluctuation, thepumpsshouldbeequippedwithavariable-speeddrive.Theycanthenbesettotheiroptimumspeedofoperationviacom-parisonofthereferenceandactualvalues,e.g.byinductivemeasurementofflow.

    Thisgentlepumpingprocesshasnomeasurableeffectontheseparabilityofthewholemilk.How-ever,thereisanegativeeffectwithpumpsthatarethrottled,forexampleto6070percentoftheirmaximumspeed.Asaconsequence,anadditionalresidual fatcontentofasmuchas10percentormoreisobtainedintheskimmilk.

    AsshowninFig.9,itshouldnotbepossibletoinflu-encetheoperationofthepumps.

    upto10h

    30

    25

    20

    15

    10

    5

    C

    Criticalarea

    1stmilking 1st+2ndmilking 1st+2nd+3rdmilking

    max12C

    P0.80.9P0.60.7

    PrisingtendencyP=pyrovatecontent

    ~2h ~1h ~1hbis10hmax1h max1h

    Time(h)

  • FoodTec10

    WestfaliaSeparator

    Fig.9

    Differentpumpoperations

    fortransportingtherawmilk

    Example1)showstheproblemofairentrainment.Inexamples2)and3),incomparison,mutualimpair-mentofpumpoperationalsoleadstoentrainmentofairandmechanicalstrainofthemilk.Inexample3)thepumpconnectedinparallelimpairsseparationefficiencybyupto1/100percent.

    2.2.3 Age of the milk

    Becauseofthetwo-daycollectionofthemilkfromthe farmscustomary today,and theconsequentneed to keep themilk cold at temperatures of35C,theseparabilityofthewholemilkisreduced.Thereasonisthat,asthemilkisheldforsolongatalowtemperature,verysmallwaterdropletsbindwiththefatglobules.Withthewholemilksimul-taneouslysubjectedtomechanicalstrain,e.g.duetostirring,thefatglobulemembraneundergoesapartialstructuralchange.Anincreaseinspecificden-sityoccurs,ontheonehandduetotheexchangeoftheoriginalmembranecomponentswithproteinsfromtheserum(carrier liquid),oraspureproteinabsorptionofthemembrane.However,thegreaterportionremainsintheskimmilk,therebyincreasingtheresidualfatcontent.

    1

    1.5

    2

    2.5

    20 30 40 50 60

    Freshmilk

    Refrigeratedandstoredmilk

    Fatco

    nten

    tinskimm

    ilkasamultip

    leofthe

    fatco

    nten

    tat55C

    MilkseparationtemperatureC

    Fig.10

    Residualfatcontentintheskim

    milkafterprocessingofcold-stored

    andfreshwholemilk

    PI

    PI

    Bad:TankfilledfromaboveHoselinetopump

    Better:TankfilledfrombelowGravityfeedbyfixedpipelinePipelinediameteradequate

    Bad:Tankfilledandemptiedviaasinglepipeline

    Better:OnetankbeingfilledOnetankbeingemptied

    Bad:Parallelswitchingofpumps

    Better:Eachpumphasitsownsuctionline

    1)

    2)

    3)

  • 11

    WestfaliaSeparator

    FoodTec

    Thisprocessistosomeextentreversible.Byincreas-ingtheseparationtemperaturethefatglobulemem-branescanbereturnedalmosttotheiroriginalstate.Forthisreason,higherseparationtemperaturesareusedtodaythanwerecustomaryinthepast.Fig.10illustratesthebehaviourofseparationefficiencyasafunctionoftheholdingtimeatlowtemperature.

    2.2.4 Quality of the whole milk

    Theseparabilityofrawmilkdepends,inadditiontototalbacterialcount,amongotherthingsonthe:

    pHlevel Freefatvalues(FF) Freefattyacids(FFA) Sizedistributionofthefatglobules

    The influenceofforeignparticles isnormallynotimportant.However,ifthereisahighlevelofimpu-rityinthemilk,centrifugalclarification,e.g.directlyafterdelivery,willimproveitsseparability.Iftheseinfluencing factorshavebeen largely takencareof,astatementcanbemadeastotheextentto

    whichthewholemilkhasalreadybeensubjectedtomechanicalstrain,andtherebytopossibledamageofthemilkfat.

    Statements and their limitations through detection of FFA (free fatty acids by the BDI-Method)

    Thevalues forFFAatdeliveryof thewholemilktothedairiesobtainedfromtheliteratureandourownmeasurementsattheendofthe1960swas0.40.5milliequiv./kg.Ifthedataobtainedsincethemiddleofthe1980sisusedasabase,then,inthemilkproducingcountrieswitharelativelyhighlevelofindustrialisationofmilkproduction,theFFAvaluesarebetween0.81.0milliequiv./kgasaruletoday.Fig.11shows,amongotherthings,thecurveoftheFFAtakenoverthecourseofayearinSwitzerlandduringthesecondhalfofthe1980s.KnowledgeoftheFFAvaluehasacertain impor-tancetodayinjudgingcold,unpasteurisedwholemilk,butterandcheese-makingprocesses.

    Fig.11

    Contentoffreefattyacidsand

    lipolysablefatinwholemilk

    ondeliverytothedairyduring

    theyear(Zurich)

    Freefattyacids

    Lipo

    lysablefat(m

    illiequ

    iv./l)

    1.3

    1.2

    1.1

    1.0

    0.9

    0.8

    0.7

    0.6Jan. Feb. March Apr. May June July Aug. Sept. Oct. Nov. Dec.

    LF

    FFS

    TanktruckrouteI

    TanktruckrouteK

  • FoodTec12

    WestfaliaSeparator

    Fig. 12 shows clearly that the results obtaineddependtoagreatextentontheleveloftheinitialvalue.Thetestresultsaretherebynotreproducible.ItisquiteclearevenwithalowFFAvaluethattheincubationtimehardlyplaysapart.Toobtainreli-ablevalues,theincubationtimeshouldbeatleast3hoursat36C.

    Anadditionalfactorthatnegativelyaffectsthereli-abilityoftheFFAvalueisthattheproductionofFFAistimedependent,becauseofthepresenceofthelipaseenzymeandfreefat(FF).

    Thespeedofthisreactiondepends,amongotherthings,onthequalityofthefree,orextractablefat,theamountofactivelipaseenzymepresentandtheproducttemperature.Consequently,theincreaseinFFAisnotproportionaltotheincreaseintheeffectontheseparabilityofthewholemilk.

    Fig.12

    FFAvalueasafunctionof

    theshelflifeandtheinitial

    FFAvalue

    Asalreadymentioned,theproducttemperaturehasadirectinfluenceonthereliabilityoftheFFAvaluesobtained.Ithasalreadybeenshowninfig.8(Milkcoolingonthefarm),thattherearetwooptimumtemperatures(15Cand40C).Moreover,thelipaseenzymeisalmostinactivebelow10Candistheo-reticallykilledoffattemperaturesL60C.Practicaltests,however,stillshownegligiblelipaseactivityaboveatemperatureofabout50C.

    Free fat

    Methods formeasuring the levelof free fat (FF)whichprovidereliableandreproducibleresultshavebeenavailable forsometime.Twomethods, thecentrifugalandextractionmethodscanbeused,however,onlytheextractionmethodgivesreliableinformation.Thedifferenceisthatthecentrifugalmethodmeasuresonlythefatoutsidethefatglob-ulemembrane.With theextractionmethod thefatenvelopedbyaporous, i.e.partiallydamagedmembrane, isalsomeasured.The latterdamagehasanoticeableeffect,particularlywithlongstor-agetimes,asthefatturnstooilwithtime.Ifactivelipase ispresent,there isalsotheriskof lipolyticattackintheeventofdamagedmembranes.

    FFA 1.5

    1.3

    1.1

    1.0

    0.8

    0.6

    0.5

    0 3

    milliquiv./l

    1.4

    1.2

    0.9

    0.7

    0.4

    12h

    +35.2%

    xx

    xx

    xx

    +31.5%

    +19.3%

    +13.3%

  • 13

    WestfaliaSeparator

    FoodTec

    Fig.13

    RelationshipbetweenFFA

    valuesandresidualfatcontent

    intheskimmilk

    Thecurveof theFFAvalue, ( ) inFig.14,wouldleadtowrongconclusions.Testseries1=milkedbyhand,showsclearlythehighqualityoffreshhand-milkedwholemilk( ).Atthesametime,however,there is thequitenegativeeffectofcoldstorage( , ).

    Inspectionoftestseries(2)and(3)showsanidenti-caltendencyintheslopeofthecurve.ThisallowsthefollowingconclusionstobedrawnwithrespecttotheFFvalues:

    Inthecaseofmachinemilked,cold-storedmilkthesamplesmustbestoredforatleast

    24hoursat46Ctoallowreliabletesting oftheFF

    AnAGFvalueof4percentisgivenasthemaximumforastillwell-separatedwholemilk,

    asfrom4percentthereisasteepriseinthecurvetoanuppermeasurement(case2)as

    earlyasthefirstbasicoperation(Inthetestthemechanicalstrainspecificallyexceededthe

    normalmeasurement) At23percentAGFintheinitialsamplethefirstmechanicalstrain(case3)raisestheFF

    value,butonlythesecondtakesthevaluefromabout4percenttothehighupperlevel

    Fig.14

    InterrelationoftheFFvalues

    andmechanicalstrainfor

    differentqualitiesofwholemilk

    ' Mechanicalbasicactionsuperposedonthemilk'' Thesamemechanicalbasicactionsuperposedtwice onthemilk

    1 Handmilked2 Every2daysfromfarmersi.e.4milkings3 Wholemilkfrombalancetankindairy freshtested 24h56Cstoragetemp. 36h56Cstoragetemp.

    1.5

    1.3

    1 4

    1.4

    1.2

    1.1

    1.0

    Samples

    1.5

    1.3

    1.4

    1.2

    1.1

    1.0

    2 3 5 6 7 8 9

    FFA1 FFAcontentindeliveredmilkFFA2 FFcontentinmilkimmediatly beforeseparation

    FSK measuredby gravimetricanalysis

    Freefattyacids,F

    F[ FFA

    2]

    FFA1

    Residu

    alfatcon

    tet,F

    MM[F SK

    measured

    ] F S

    Km

    in

    1 2'

    2

    1'' 2 2'' 3 3' 3''1'

    4

    6

    8

    10

    12

    14

    16

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4

    1.6

    Effectofco

    ld

    clarificatio

    n

    AGF[%

    ]

    FFA[m

    illiquiv./l]

  • FoodTec14

    WestfaliaSeparator

    Fig.16

    Sizedistributionofthefat

    globulesintheskimmilk

    Fig.15

    Sizedistributionofthefat

    globulesinthewholemilk.

    ValuesIandIIareforthedif-

    ferentcatchmentareas.

    1.03

    0

    1.09

    1.10

    1.23

    1.30

    1.38

    1.47

    1.56

    1.65

    1.75

    1.86

    1.97

    2.10

    2.22

    2.36

    2.50

    2.66

    2.82

    2.99

    3.18

    3.37

    3.58

    3.80

    4.03

    4.27

    4.54

    4.81

    5.11

    5.42

    5.75

    6.10

    6.48

    6.57

    7.30

    7.74

    8.22

    8.72

    9.25

    9.82

    10.42

    11.06

    11.73

    25

    50

    I

    II

    Fatglobulediameterinm

    5242

    8810

    4857

    6

    Volumeun

    itsin

    l

    Wholemilk:FRGFatcontent:4%Periodtested:2/87

    75

    1572

    864

    0.70

    0

    0.79

    0.89

    1.00

    1.12

    1.26

    1.42

    1.60

    1.81

    2.03

    2.29

    2.58

    2.90

    3.27

    3.68

    4.15

    4.67

    5.26

    5.93

    6.67

    7.52

    25

    50

    I

    II

    Fatglobulediameterinm

    4096

    8192

    Volumeun

    itsin

    l

    Periodtested:2/'87

    7512

    288

    0

  • 15

    WestfaliaSeparator

    FoodTec

    Fig.17

    Separationcurves(whole

    milktoskimmilk)

    2.2.5 Size distribution of the fat globules

    Therelativelyslightdifferencesinthesizedistribu-tionofthefatglobulesinthewholemilk(seeFig.15)onlyallowtrendstobeidentifiedtoalimitedextent.ValuesIandIIareforthedifferentcatch-mentareas.Fig.16showsthesizedistributionofthefatglobulesintheskimmilk(SK).CurvesIandIIillustratetheeffectivenessoftheinstallationcon-ceptsandprocessparameters.However,itispossi-bletooptimisethevaluesininstallationII.Asalreadymentioned,theabsoluteresidualfatcontentintheskimmilk thatwouldbeattainable,canonlybedeterminedasatrend.Bymeansofaparticlecount,thediagraminFig.17showsevenmoreclearlythedifficultyofprovidingareliableassessmentofthequalityoftheseparabilityofwholemilk.Here,thesizedistributionofthefatglobulesinthewholemilkandskimmilkarecompared. ItcanbeseenthattheseparationcurvesIandIIarealmostcongruentintheirbehaviour.IncomparisonwithFig.16theskimmilkIIhasadistinctlyhigherresidualfatcon-tent.TheresidualfatlevelsinSKIandSKII,testedinthelaboratorybytheGerbermethod,were0.045(I)and0.054(II).

    Thuscountingthefatglobulesinthewholemilkorskimmilkhasonly limitedvalidity. IfFig.15istaken forcomparison, thenwithaclear shiftoftheoptimumforthesizedistributiontowardssmalldiameters,an impairmentof separability canbeexpected.Ontheotherhand,thesizedistributionintheresidualfatcontentoftheSK(Fig.16)doesnotfollowtheusualcourse.CurveIIinFig.16,how-ever,justifiestheclaimthatthisseparationlinecanbeoptimised.

    2.2.6 Effect of air in the product onseparation efficiency

    Freeaircarriedbytheproductcanhaveadirecteffectontheseparationefficiencyofthemilksepa-rator,inadditiontothenegativeeffectonthequal-ityoftheendproduct.Inevaluatingtheseeffectsthefollowingshouldbeborneinmind:wholemilkgenerallycontainsacertainamountofcombinedgas;thegassaturationpointofthemilkdecreaseswithincreasingtemperature;gascanthereforebeliberatedbyheattreatment.

    0.70

    0

    0.79

    0.89

    1.00

    1.12

    1.26

    1.42

    1.60

    1.81

    2.03

    2.29

    2.58

    2.90

    3.27

    3.68

    4.15

    4.67

    5.26

    5.93

    6.67

    7.52

    25

    50

    III

    Fatglobulediameterinm

    3264 Sepa

    ratio

    nin%

    EI=98.875%EII=98.65%Producttemperature53CCreamfatcontent42%Periodtested:2/'87

    75

    960

    100

  • FoodTec16

    WestfaliaSeparator

    Ifthemilkistestedtoascertaintheactualvolumesofliberatedgas,thefollowingshouldbeborneinmind:

    Inthecaseofachangeintemperature,thegasabsorptionintothemilkvaries

    Ifthemilkisexposedtovacuum,thesatura-tionpointisloweredconsiderably

    Inthecaseofoverpressure,thesaturationpointisraisedonlyveryslightly

    ItcanbeseenfromthecurveinFig.18thatwithheattreatmentofthewholemilkinthemilksepara-tionline,gas(air)isautomaticallyliberated.Inordertobeabletoevaluatetheaircontentinthewholemilkupstreamoftheseparatorundernormalcondi-tions.

    Inaccordancewiththediagram,approx.5mgO2/lgasisliberatedwhenthetemperatureofthewholemilk is increased from10C to55C. It canbeassumedthatthesaturationbehaviourofnitrogen(N2)issimilartothatofoxygen(O2).Thiscontentoffreeairisnotyetsufficienttoimpairseparationefficiency.

    Afurtherincreaseingascontentisnormallyattributabletothefollowingcauses:

    Theproductcontainsforeigngaswhenproces-singcommences

    Thebalancetanksaretoosmall,orflowcon-ditionsinthebalancetanksareunfavourableduringfillingandemptying

    Partsoftheinstallationarenotair-tight Inasystemunderpressure,aircanbedrawninwithoutlossofproductduetothe

    injectoreffect Theseparatordischargepressureshavenotbeencorrectlyadjusted

    Thepressurestagesinthesystemaretoolarge(asuddendropinpressurecausesgastobereleased)

    Ifthevolumeoffreeairincreasestovalues>2.5per-cent(approx.55C),itwillhaveanegativeeffectontheseparabilityoftheproductintheseparator.

    Fig.18

    Saturationpointofgas

    inliquidsasafunctionof

    temperature

    Oxygensaturationinwaterasafunctionofthe

    temperature

    xx Oxygensaturationinthemilk

    ismeasuredasanincreaseinfreeaircontent20

    15

    10

    5

    0 10 20 30 40 50 C

    Saturatio

    npo

    intmgO

    2/l

    x

    xx

    5mgO2=ca.25mgair 2510-6kgair

    Thisgivesanairvolumeof:

    Vair =GL

    L

    =2510

    -6

    1.29310-3


Recommended