Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical Nanowire MOSFETs ·...

Post on 30-Jun-2020

0 views 0 download

transcript

Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs

to Vertical Nanowire MOSFETs

J. A. del AlamoMicrosystems Technology Laboratories, MIT

Purdue University,West Lafayette, IN; September 29, 2015

Acknowledgements:• D. Antoniadis, J. Lin, W. Lu, A. Vardi, X. Zhao• Sponsors: DTRA, Lam Research, Northrop Grumman, NSF, Samsung• Labs at MIT: MTL, EBL

Presenter
Presentation Notes

Contents

1. Motivation: Moore’s Law and MOSFET scaling2. Planar InGaAs MOSFETs 3. InGaAs FinFETs4. Vertical nanowire InGaAs MOSFETs 5. Conclusions

2

1. Moore’s Law at 50: the end in sight?

3

Moore’s Law

Moore’s Law = exponential increase in transistor density

4

Intel microprocessors

What if Moore’s Law had stopped in 1990?

5

Cell phone circa 1990GPS handheld device circa 1990

6

What if Moore’s Law had stopped in 1980?

Laptop computer circa 1981

7

What if Moore’s Law had stopped in 1970?

TV set, circa 1970

8

What if Moore’s Law had never happened?

Insulin pump circa 1960 “Personal calculator” circa 1960

1960

Moore’s Law

9

?

How far can Si support Moore’s Law?

Transistor scaling Voltage scaling Performance suffers

Transistor current density (planar MOSFETs):

Transistor performance saturated in recent years10

Moore’s Law: it’s all about MOSFET scaling

Enhanced gate control improved scalability

1. New device structures:

11

Moore’s Law: it’s all about MOSFET scaling

2. New materials:Si Strained Si SiGe InGaAs

Si Strained Si SiGe Ge InGaSb

Future CMOS might involve twodifferent channel materials with two different relaxed lattice constants!

del Alamo, Nature 2011 (updated)12

Measurements of electron injection velocity in HEMTs:

• vinj(InGaAs) increases with InAs fraction in channel• vinj(InGaAs) > 2vinj(Si) at less than half VDD

• ~100% ballistic transport at Lg~30 nm

Electron velocity: InGaAs vs. Si

13

del Alamo, Nature 2011

III-V electronics in your pocket!

14

del Alamo’s group at MIT: Current and future activities

N-type InGaAs MOSFETs:

P-type InGaSb MOSFETs:future

Jianqiang Lin Xin ZhaoAlon Vardi

Wenjie Lu

New students:Xiaowei CaiDongsung Choi

15

2. Self-aligned Planar InGaAs MOSFETs

Lin, IEDM 2012, 2013, 2014

WMo

Lee, EDL 2014; Huang, IEDM 2014

selective MOCVD

Sun, IEDM 2013, 2014 Chang, IEDM 2013

reacted NiInAs

dry-etched recess

implanted Si + selective epi

16

Self-aligned Planar InGaAs MOSFETs @ MIT

Lin, IEDM 2012, 2013, 2014

Recess-gate process:• CMOS-compatible• Refractory ohmic contacts (W/Mo)• Extensive use of RIE

WMo

Jerome Lin17

Fabrication process

• Ohmic contact first, gate last • Precise control of vertical (~1 nm), lateral (~5 nm) dimensions • MOS interface exposed late in process

W/Mon+ InGaAs/InPInGaAs/InAsInAlAs

SiO2

InPδ-Si

Resist

MoPad

HfO2

Mo/W ohmic contact + SiO2 hardmask

SF6, CF4 anisotropic RIE CF4:O2 isotropic RIE

Cl2:N2 anisotropic RIE Digital etch

Waldron, IEDM 2007

Finished device

Lin, EDL 2014

O2 plasma H2SO4

18

Lin, IEDM 2013

Ti/Au pad

Spacer: OxideGate: Mo

Contact: Mo

Lg = 20 nm, Laccess= 15 nm MOSFET most compact III-V MOSFET made at the time

Lg=20 nm InGaAs MOSFET

n+ cap

Channel

Mo

W

Mo/HfO2

20 nm

Buffer

SiO2

InAs 0.0 0.1 0.2 0.3 0.4 0.50.00.20.40.60.81.0 Lg=20 nm

Ron=224 Ω.µm 0.4 V

I d (m

A/µm

)Vds (V)

Vgs-Vt= 0.5 V

20 nm

15 nm

19

• Channel: In0.7Ga0.3As/InAs/In0.7Ga0.3As • Gate oxide: HfO2 (2.5 nm, EOT~ 0.5 nm)

Highest performance InGaAs MOSFET

• Record gm,max = 3.1 mS/µm at Vds= 0.5 V• Ron = 190 Ω.µm

-0.4 -0.2 0.0 0.20.00.51.01.52.02.53.03.5

gm,max= 3.1 mS/µm

Lg = 80 nmVds= 0.5 V

g m (m

S/µ m

)Vgs (V)

0.0 0.1 0.2 0.3 0.4 0.50.00.20.40.60.81.01.21.4

I d (m

A/µm

)

Vds (V)

Vgs = -0.3 to 0.4 V in 0.1 V stepLg = 80 nmRon=190 Ω.µm

Lg =80 nm, tc=9 nm

Lin, IEDM 201420

Excess OFF-state current

OFF-state current enhanced with Vds

Band-to-Band Tunneling (BTBT) or Gate-Induced Drain Leakage (GIDL) Lin, IEDM 2013

-0.6 -0.4 -0.2 0.010-11

10-9

10-7

10-5 Lg=500 nm

Vds=0.3~0.7 Vstep=50 mV

I d(A/µ

m)

Vgs (V)

Transistor fails to turn off:

Vds ↑

21

-0.4 -0.2 0.0 0.210-11

10-9

10-7

10-5 W/ BTBT+BJT W/O BTBT

Vds=0.3~0.7 Vstep=50 mV

I d (A/

µm)

Vgs (V)

Excess OFF-state current

Lg↓ OFF-state current ↑ additional bipolar gain effect due to floating body

Lin, EDL 2014

-0.6 -0.4 -0.2 0.010-11

10-9

10-7

10-5 Lg=500 nm

Vds=0.3~0.7 Vstep=50 mV

I d(A/µ

m)

Vgs (V)-0.6 -0.4 -0.2 0.0

10-8

10-7

10-6

10-5

10-4

500 nm280 nm

120 nm

T=200 KVds=0.7 V

I d (A/

µm)

Vgs-Vt (V)

Lg=80 nm

Vds ↑

Simulationsw/ BTBT+BJTw/o BTBT+BJT

Lg=500 nmLin, TED 2015

22

Impact of channel thickness scaling

• tc ↓ S ↓ but also gm,max ↓• Even at tc=3 nm, Lg,min~40 nm

planar MOSFET at limit of scaling

Lin, IEDM 2014Lin, TED 2015

0.01 0.1 1 100

1

2

3

g m,m

ax (m

S/µm

)Lg(µm)

4 nm

tc=9 nm

11 nm

12 nm7 nm

3 nm

8 nmVds=0.5 V

0.01 0.1 1 100

100

200

300

400

S min (m

V/de

c)

Lg(µm)

Vds=0.5 Vtc ↓

3 nm

Vds=0.5 V

tc=12 nm

23

Benchmarking: gm in MOSFETs vs. HEMTs

del Alamo, ESSDERC 2013 (updated)

MIT MOSFETs

Latest: 3.7 mS/µm!

– Very rapid recent progress in MOSFET gm

– Best MOSFETs now surpass best HEMTs– No sign of stalling more progress ahead!

gm of InGaAs MOSFETs vs. HEMTs (any VDD, any Lg):

24

3. InGaAs FinFETs and Trigate MOSFETs

Kim, IEDM 2013

60 nm

dry-etched fins

SiWaldron, VLSI Tech 2014

Epi-grown fin inside trench

25

InGaAs FinFETs @ MIT

Key enabling technologies: • BCl3/SiCl4/Ar RIE • digital etch

Zhao, EDL 2014; Vardi, DRC 2014

Alon Vardi

26

0.0 0.1 0.2 0.3 0.4 0.50

5

10

15

20 Wf=12 nm

VGS=0 VI D [µ

A/µm

]

VDS [V]

VGS=0.5 V

Interface-state study on sidewalls of InGaAs FinFET

At sidewall: Dit,min ~ 3x1012 eV-1.cm-2

Lg=5 μm

Vardi, DRC 2014

Long-channel MOSFET characteristics (Wf=12~37 nm):

27

Sub-10 nm fin width InGaAs FinFETs

Wf=7 nm, Lg=3 µm MOSFETInGaAs doped channel: • 50 nm thick• ND~1018 cm-3

Oxide: Al2O3/HfO2 (EOT~3 nm)

Fin width: 5 ~ 35 nmFin height: 130 nm100 fins

Vardi, IEDM 2015 28

4. Lateral vs. Vertical Nanowire MOSFETs

Yakimets, TED 2015Bao, ESSDERC 2014

• Nanowire MOSFET: ultimate scalable transistor• Vertical NW: uncouples footprint scaling from Lg and Lc scaling

power, performance and area gains wrt. Lateral NW

5 nm node

30% area reduction in 6T-SRAM19% area reduction in 32 bit multiplier

29

InGaAs Vertical Nanowires on Si by direct growth

Björk, JCG 2012

Selective-Area Epitaxy

Au seed

Vapor-Solid-Liquid (VLS) Technique

InAs NWs on Si by SAE

Riel, MRS Bull 2014

30

Persson, DRC 2012Tomioka, Nature 2012Tanaka, APEX 2010

InGaAs VNW-MOSFETs by bottom-up techniques

Many device demonstrations:

31

InGaAs VNW-MOSFETs fabricated via top-down approach @ MIT

Zhao, IEDM 2013

Top-down approach: flexible and manufacturable

n+ InGaAs, 70 nm

i InGaAs, 80 nm

n+ InGaAs, 300 nm

Starting heterostructure:

n+: 6×1019 Si doping

Xin Zhao

32

Key enabling technology I: RIE by BCl3/SiCl4/Ar chemistry

• Sub-30 nm resolution• Aspect ratio > 8• Smooth sidewall and surface• Substrate temperature critical during RIE

Zhao, EDL 2014

28 nm

240 nm

33

Key enabling technology II: digital etch

• Planar etching rate: ~1 nm/cycle• Shrinks NW diameter by 2 nm per cycle• Unchanged shape• Reduced roughness

Self-limiting O2 plasma oxidation + H2SO4 oxide removal

before after 5 cycles

Lin, EDL 2014Zhao, EDL 2014

0 200 400 6000.0

0.5

1.0

1.5

2.0ExperimentModel

Rate

(nm

/cyc

le)

Oxidation time (s)

34

Optimized RIE + Digital Etch

• Sub-20 nm resolution• Aspect ratio = 16, vertical sidewall• Smooth sidewall and surface

15 nm

240 nm

Zhao, EDL 2014

35

Process flowTomioka, Nature 2012Persson, DRC 2012

36

NW-MOSFET I-V characteristics D=30 nm

Single nanowire MOSFET: • Lch= 80 nm • 4.5 nm Al2O3 (EOT = 2.2 nm)

At VDS=0.5 V:• gm,pk=280 μS/μm• Ron=759 Ω.μm

0.0 0.1 0.2 0.3 0.4 0.5Vds (V)

Vgs=-0.6 V to 0.8 V in 0.1 V stepRon=759 Ω.µm (at Vgs=1 V)

0

50

100

150

200

I d (µ

A/µm

)

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.60

50

100

150

200

Vgs (V)0

50

100

150

200

250

300gm, pk(Vds=0.5 V)=280 µS/µm

Vds=0.5 V

I d (µ

A/µm

)

g m (µ

S/µm

)

Zhao, IEDM 201337

Impact of nanowire diameter

D↓ S ↓, DIBL ↓, gm ↓, Ron ↑

30 35 40 45 50

150

200

250

300

350

S (m

V/de

c)

Diameter (nm)

Vds=0.5 V

Vds=0.05 V30 35 40 45 50

150200250300350400450

Diameter (nm)

DIBL

(mV/

V)

30 35 40 45 50

200

400

600

800

g m (µ

S/µm

)

Diameter (nm)

Vds=0.5 V

30 35 40 45 50200

400

600

800

1000

1200

Vgs=1 V

R on (

Ω.µ

m)

Diameter (nm)

Error barsindicatedistributionof ~10 devices

38

Impact of digital etch

Digital etch S ↓, gm ↑ Better sidewall interface

Single nanowire MOSFET: D= 30 nm (final diameter)

Zhao, EDL 2014

39

200 400 6000

200400600800

10001200

Vds=0.5 V

S(mV/dec)

g m,p

k(µS/

µm)

Tanaka, APEX 10 Tomioka, IEDM 11 Tomioka, Nature 12 Persson, DRC 12 Persson, EDL 10 This work (Top down)

Bottom up

This work

Benchmarking

• Trade-off: D↓ S↓ but also gm↓• Top-down approach as good as bottom-up approach

Persson, DRC 2012

Tomioka, Nature 2012 Tanaka, APEX 2010

Persson, EDL 2012

40

InGaAs VNW MOSFET Concerns(a short list…)

• Relatively poor subthreshold behavior

small VDS

0 5 10 15 20 25 300

100

200

300

400

500

600

Lg/λeff

S [m

V/de

c]

0 5 10 15 20 25 300

100

200

300

400

Lg/λeffDI

BL [m

V/V]

Auth, EDL 1997Electrostatic characteristiclength for GAA NW

41

InGaAs VNW MOSFET Concerns(a short list…)

• Excess Ioff due to BTBT + Floating BJT Quantization enhances bandgap Vertical bandgap engineering

Wang, ACSNano 2008

InAs NWs

42

• InGaAs low DOS limits current Increase in injection velocity with carrier density more than compensates for this

Yu, TED 2008

InGaAs VNW MOSFET Concerns(a short list…)

D=5 nm (?) NW MOSFET

43

• VT sensitivity to nanowire diameter very tight manufacturing tolerance

Agrawal, TED 2013

Wf=8 nm Trigate MOSFETs

InGaAs VNW MOSFET Concerns(a short list…)

Individual nanowires

Gray: nanowire array

Teherani, PhD MIT, 2015 44

• Asymmetric device behavior: D down ≠ D up more restrictive circuit wiring

InGaAs VNW MOSFET Concerns(a short list…)

Drain at bottom Drain on top

0.0 0.1 0.2 0.3 0.4 0.50

100

200

300

400

500

I d (µ

A/µm

)

Vds(V)

Vgs = -0.6 to 0.6 V in 0.2 V stepD = 40 nm, Lg = 80 nm

45

• Sensitivity to few defects

InGaAs VNW MOSFET Concerns(a short list…)

0.0 0.1 0.2 0.3 0.4 0.5Vds (V)

Vgs=-0.6 V to 0.8 V in 0.1 V stepRon=759 Ω.µm (at Vgs=1 V)

0

50

100

150

200I d

(µA/

µm)

D=7 nm, Lg=14 nm (5 nm design rules) Sg=540 nm2

Dit=2x1011 cm-2.eV-1 Nit~1 eV-1

46

• Top contact resistance • Difficult to introduce mechanical stress• Self-heating• …

InGaAs VNW MOSFET Concerns(a short list…)

47

Conclusions1. Great recent progress on planar, fin and nanowire III-V MOSFETs

2. Vertical Nanowire III-V MOSFET: superior scalability and power/performance characteristics

3. Vertical Nanowire n- and p-type III-V MOSFET: plausible path for co-integration on Si

4. Many demonstrations of InGaAs VNW MOSFETs by bottom-up and top-down approaches

5. Many issues to work out:

– sub-10 nm diameter nanowire fabrication, self-aligned contacts, device asymmetry, Introduction of mechanical stress, VT control, device variability, BTBT and parasitic HBT gain, trapping, self-heating, reliability, co-integration with p-type VNW on Si, …

48

A lot of work ahead but…exciting future for III-V electronics

49