+ All Categories
Home > Documents > 1st National Conference on Biotechnology Lima, Peru, 12 de...

1st National Conference on Biotechnology Lima, Peru, 12 de...

Date post: 30-May-2020
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
30
1 st National Conference on Biotechnology Lima, Peru, 12 de mayo de 2009 Genomics in the Gramineae and Application to Productivity and Nutritional Quality for Sorghum, Corn, Sugarcane, and Rice Joachim Messing, Waksman Institute, Rutgers University, New Jersey, USA
Transcript
Page 1: 1st National Conference on Biotechnology Lima, Peru, 12 de ...perubiotec.org/PDFs/3_J_Messing-Genomics_in_the_Gramineae.pdf · 1st National Conference on Biotechnology Lima, Peru,

1st National Conference on Biotechnology Lima, Peru, 12 de mayo de 2009

Genomics in the Gramineae and Application to Productivity and Nutritional Quality for

Sorghum, Corn, Sugarcane, and Rice

Joachim Messing, Waksman Institute, Rutgers University, New Jersey, USA

Page 2: 1st National Conference on Biotechnology Lima, Peru, 12 de ...perubiotec.org/PDFs/3_J_Messing-Genomics_in_the_Gramineae.pdf · 1st National Conference on Biotechnology Lima, Peru,

Evolution of grasses

Ehrhartoideae

Panicoideae

Pooideae Paterson et al. (2009) Plant Phys. 149, 125-131

Page 3: 1st National Conference on Biotechnology Lima, Peru, 12 de ...perubiotec.org/PDFs/3_J_Messing-Genomics_in_the_Gramineae.pdf · 1st National Conference on Biotechnology Lima, Peru,

Sequencing entire genomes

DNA sequencing machines

Page 4: 1st National Conference on Biotechnology Lima, Peru, 12 de ...perubiotec.org/PDFs/3_J_Messing-Genomics_in_the_Gramineae.pdf · 1st National Conference on Biotechnology Lima, Peru,

Sorghum Genome Project

Page 5: 1st National Conference on Biotechnology Lima, Peru, 12 de ...perubiotec.org/PDFs/3_J_Messing-Genomics_in_the_Gramineae.pdf · 1st National Conference on Biotechnology Lima, Peru,

Sorghum Genome Sequencing Project

Library Type Total ReadsPaired HQ Paired HQ ReadsCoverage Average Insert Standard Dev.Small Insert 4,817,407 4,114,610 3.74x 2,443 +/- 385

Medium Insert I 2,661,374 2,374,732 2.32x 6,398 +/- 528Medium Insert II 2,149,803 1,812,074 1.72x 6,881 +/- 585Medium Insert III 18,144 16,108 0.01x 8,613 +/- 759

Fosmid 850,443 606,062 0.52x 34,647 +/- 3,812BAC/SB_BBc 193,920 176,744 0.17x 107,982 +/- 21,811BAC/SB_BBd 26,112 16,996 0.02x 90,993 +/- 25,014

Total 10,717,203 9,117,326 8.50x

•Pair wise reads •Mix of insert sizes •735 bp average read

Page 6: 1st National Conference on Biotechnology Lima, Peru, 12 de ...perubiotec.org/PDFs/3_J_Messing-Genomics_in_the_Gramineae.pdf · 1st National Conference on Biotechnology Lima, Peru,

Repeat Ontology

RepeatMasker

Masked sequences Repeat annotation (ANGELA)

Structural gene annotation

GenomeDB

de novo Repeat detection�(LTR_STRUC)

Repeat detection and filter

Page 7: 1st National Conference on Biotechnology Lima, Peru, 12 de ...perubiotec.org/PDFs/3_J_Messing-Genomics_in_the_Gramineae.pdf · 1st National Conference on Biotechnology Lima, Peru,

TEs in sorghum, rice, and maize

SB OS ZM*

Class I: Retroelement** 97.88 65.35 98.05 LTR Retrotransposon 97.73 59.49 92.65 Ty1/copia 8.68 6.25 26.84 Ty3/gypsy 31.66 30.49 46.57 unclassified LTR 57.39 22.76 19.24 non-LTR Retrotransposon 0.07 3.15 0.43 LINE 0.07 2.02 0.42 SINE 0.00 1.13 0.01 unclassified retrotroelement 0.09 2.70 4.97Class II: DNA Transposon 2.12 34.65 1.95 DNA Transposon Superfamily 0.34 17.83 1.14 CACTA superfamily 0.17 8.68 0.58 hAT superfamily 0.04 1.33 0.12 Mutator superfamily 0.10 4.58 0.18 Tc1/Mariner superfamily 0.00 0.05 0.00 PIF/Harbinger 0.03 0.01 0.09 unclassified super family 0.00 3.18 0.15 MITE 1.48 13.29 0.40 other DNA transposon 0.29 3.52 0.42Total as percent of genomeTransposon DNA** 58.2 39.4 80.9Coding space 13.7 33.0 7.5Intergenic space incl. regulatory seq. 28.1 27.6 11.6

100 random BACs*Percent of nucleotides**

Page 8: 1st National Conference on Biotechnology Lima, Peru, 12 de ...perubiotec.org/PDFs/3_J_Messing-Genomics_in_the_Gramineae.pdf · 1st National Conference on Biotechnology Lima, Peru,

Annotation Pipeline

Page 9: 1st National Conference on Biotechnology Lima, Peru, 12 de ...perubiotec.org/PDFs/3_J_Messing-Genomics_in_the_Gramineae.pdf · 1st National Conference on Biotechnology Lima, Peru,

Features Sorghum Rice MaizeSb1.4 Rap2 100 Bacs

Genome size 738540932 372089805 14419909 Chromosome assemblies 659229367 unassembled 79311565

# genes 27640 28236 330average # of exons per gene 4.4 4.8 4.6average exon size [bp] 303 364 234median exon size [bp] 159 165 128average intron size [bp] 441 441 545median intron size [bp] 145 161 177.5average gene size * [bp] 2616 2468 3040median gene size * [bp] 1810 1811.5 1940Average gene density (kb per gene) 26.7 13.2 43.7

GC content [%] Overall 46.4 43.6 46.6 Exons 53.5 51.2 55.5 Introns 39.8 37.7 42.5

Gene Models in sorghum, rice, and maize

27,640 bona-fide 5,197 remnants 727 pseudogenes 932 TE-related 34,496 total

Page 10: 1st National Conference on Biotechnology Lima, Peru, 12 de ...perubiotec.org/PDFs/3_J_Messing-Genomics_in_the_Gramineae.pdf · 1st National Conference on Biotechnology Lima, Peru,

Distribution of TEs in sorghum

Page 11: 1st National Conference on Biotechnology Lima, Peru, 12 de ...perubiotec.org/PDFs/3_J_Messing-Genomics_in_the_Gramineae.pdf · 1st National Conference on Biotechnology Lima, Peru,

Synteny between rice and sorghum

rice

sorghum

Page 12: 1st National Conference on Biotechnology Lima, Peru, 12 de ...perubiotec.org/PDFs/3_J_Messing-Genomics_in_the_Gramineae.pdf · 1st National Conference on Biotechnology Lima, Peru,

• Sorghum and rice genomes are largely collinear with about 28K gene models.

• The sorghum genome expanded by retrotransposition in the pericentromeric regions relative to rice in the last million years.

• Pericentromeric heterochromatin occupies at least 460 mbp (62%) in sorghum versus 63 mbp (15%) in rice.

• Relative higher gene copies (e.g. cytochrome P450, microRNA169) compared to rice may contribute to sorghum’s draught tolerance.

• While in rice mutator-like elements (Pack-MULE) create copies of gene (fragments) in sorghum CACTA-like elements and helitrons do.

Highlights

• Conservation of genes between sorghum and rice by ancestry provides a synergistic reference because of the validation of gene models and their position.

Page 13: 1st National Conference on Biotechnology Lima, Peru, 12 de ...perubiotec.org/PDFs/3_J_Messing-Genomics_in_the_Gramineae.pdf · 1st National Conference on Biotechnology Lima, Peru,

The basic chromosome number in grasses

S. Bolot et al. Curr Opin Plant Biol, Dec 2008.

Based on synteny blocks of multiple pair-wise alignments of orthologous regions, the basic ancestral chromosome number could have been 5.

Page 14: 1st National Conference on Biotechnology Lima, Peru, 12 de ...perubiotec.org/PDFs/3_J_Messing-Genomics_in_the_Gramineae.pdf · 1st National Conference on Biotechnology Lima, Peru,

A total of 9,503 (58%) sorghum gene families shared with Arabidopsis, rice and poplar: 15,225 (93%) overlapped with at least one other species.

Nearly 94% of high confidence sorghum genes (25,875/27,640) have orthologs in rice, Arabidopsis, and/or poplar, and together these gene models define 11,502 ancestral angiosperm gene families.

3,983 (24%) gene families have members only in the grasses sorghum and rice; 1,153 (7%) appear unique to sorghum, which is similar to Arabidopsis (6.7%), but fewer in rice (3.6%), and more in poplar (15.7%).

Conclusions from Venn Diagrams

About 2,054 orthologs of our sorghum and TIGR5 rice models are absent from RAP2; ~12,000 TIGR5 models may be TEs or pseudogenes.

Page 15: 1st National Conference on Biotechnology Lima, Peru, 12 de ...perubiotec.org/PDFs/3_J_Messing-Genomics_in_the_Gramineae.pdf · 1st National Conference on Biotechnology Lima, Peru,

Ancient segmental duplication Rice 7

Rice 3 Maize 2

Maize 7

Rice 7

Sorghum 2

Rice 3

Maize 5

Sorghum 1

Maize 1

O2

OHP

Mol. Plant 1, 760-769

Page 16: 1st National Conference on Biotechnology Lima, Peru, 12 de ...perubiotec.org/PDFs/3_J_Messing-Genomics_in_the_Gramineae.pdf · 1st National Conference on Biotechnology Lima, Peru,

1 2 3 4 5 76 8 9 10 12 11

current maize genome maize progenitor genome Chromosome reconstruction

Rice Chromosome

Cereal ancestor

Oryzeae

Triticeae

Panicoideae

Sorghum

Andropogoneae (2n=20, x=10)

Zea

Progenitors of maize

Zea mays (2n=10, x=5)

60 mya 11.9 mya 4.8 mya

Chromosome number of the progenitors of maize

Wei et al. (2007) PLoS Genetics 3, 3123

Page 17: 1st National Conference on Biotechnology Lima, Peru, 12 de ...perubiotec.org/PDFs/3_J_Messing-Genomics_in_the_Gramineae.pdf · 1st National Conference on Biotechnology Lima, Peru,

Early duplication in the grass family.

• Segmental duplication about 57 mya in progenitor of rice and maize (50 mya).

• Non collinear genes already before rice and maize split.

• Unequal expansion and divergence by insertions and subfunctionalization.

• Changes are more drastic in maize compared to rice and sorghum.

• Comprise deletions, duplications, conversions, inversions, and translocations.

Page 18: 1st National Conference on Biotechnology Lima, Peru, 12 de ...perubiotec.org/PDFs/3_J_Messing-Genomics_in_the_Gramineae.pdf · 1st National Conference on Biotechnology Lima, Peru,

Chr 1 Chr 4 Chr 7

19 kDa

22 kDa

Alpha prolamins in maize, an example of gene amplification, nutritional quality and heterosis

z1D

3

4

5

1

2

FPC

33

z1C

1

11

B73

BSSS

53

z1C2

z1A1

1 2

6

B73

BSSS

53

z1A2

1 2 3

FPC

156

FP

C 1

60

FPC

163

3 4 5

7 8

3

7 8

4 5 6

9

2 1

12 13

1 2 3 4 5

11 12 13 14 15

1 2 3 4 5

17 18

6 7 8 9

6 7 8 9

10 19 20

19 20

10

21 22/D7

22/6

FPC

297

z1B

1 2 3 4 5 6 7 8 9

Page 19: 1st National Conference on Biotechnology Lima, Peru, 12 de ...perubiotec.org/PDFs/3_J_Messing-Genomics_in_the_Gramineae.pdf · 1st National Conference on Biotechnology Lima, Peru,

Loci formation during the evolution of the Panacoideae

Proc. Natl. Acad. Sci. USA 105, 14330-14335

Page 20: 1st National Conference on Biotechnology Lima, Peru, 12 de ...perubiotec.org/PDFs/3_J_Messing-Genomics_in_the_Gramineae.pdf · 1st National Conference on Biotechnology Lima, Peru,

Recent insertions of paralogous sequences seem to prefer fragile sites

Proc. Natl. Acad. Sci. USA 105, 14330-14335

Page 21: 1st National Conference on Biotechnology Lima, Peru, 12 de ...perubiotec.org/PDFs/3_J_Messing-Genomics_in_the_Gramineae.pdf · 1st National Conference on Biotechnology Lima, Peru,

Opaque2 is a bZIP transcriptional factor which specifically recognizes 5’-TCCACGTAGA-3’ motif.

basic motif leucine zipper

MW: 47 kDa (437 a.a) I.P: 4.8

5’ -AGGTTGTCACATGTGTAAAGGTGAAGAGATCATGCATGTCATTCCACGTAGATGA-3’

Prolamine Box O2 Target Sequence

251 nt

Transcriptional regulation of zein genes by O2

Page 22: 1st National Conference on Biotechnology Lima, Peru, 12 de ...perubiotec.org/PDFs/3_J_Messing-Genomics_in_the_Gramineae.pdf · 1st National Conference on Biotechnology Lima, Peru,

Mature seeds of BSSS53 E. coli

+ o2 a4

a10

a16

22/6

22/D

87

22/6

22/D87

a10, a16

a4

Divergence of transcriptional regulation in paralogous gene copies

Page 23: 1st National Conference on Biotechnology Lima, Peru, 12 de ...perubiotec.org/PDFs/3_J_Messing-Genomics_in_the_Gramineae.pdf · 1st National Conference on Biotechnology Lima, Peru,

P-Ubi-in Bar T-nos

RNAi

T-35S P-27Kd α-zein

α-zein

o2 BA D 1 2

C D

22-kD zein

22-kD zein

BA D1 D2 D3 o2 1 2 3 1 2 3 1 2 3 4 4

RNAi of alpha prolamin genes

Page 24: 1st National Conference on Biotechnology Lima, Peru, 12 de ...perubiotec.org/PDFs/3_J_Messing-Genomics_in_the_Gramineae.pdf · 1st National Conference on Biotechnology Lima, Peru,

Segment 1 Segment 2

B73 z1C gene cluster

100 150 200 50 250kb

z1C gene

DNA transposon

retrotransposon

php200725

ORF3

BSSS53 z1C gene cluster

100 200 300 400kb

Ji

Ji, Prem Opie Prem Opie Huck Huck, Ji, Opie

Ac-like TNP2-like

Zeon Zeon, Ji, Prem

En/Spm-like En/Spm-like

En/Spm-like

TNP2-like

TNP2-like

Opie

Opie

Huck, Ji, Opie

Helitron-like

The z1C1 region on maize chromosome 4 of B73 and BSSS53 are non-collinear and differ in zein and non-zein genes

CD, RP

Page 25: 1st National Conference on Biotechnology Lima, Peru, 12 de ...perubiotec.org/PDFs/3_J_Messing-Genomics_in_the_Gramineae.pdf · 1st National Conference on Biotechnology Lima, Peru,

B73 z1C gene cluster

100 150 200 50 250kb

z1C gene

DNA transposon

retrotransposon

php200725

ORF3

BSSS53 z1C gene cluster

100 200 300 400kb

-O2

Two haplotypes with allelic and non-allelic gene expression

Page 26: 1st National Conference on Biotechnology Lima, Peru, 12 de ...perubiotec.org/PDFs/3_J_Messing-Genomics_in_the_Gramineae.pdf · 1st National Conference on Biotechnology Lima, Peru,

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

azs22.14 azs22.4 azs22.7 azs22.8 azs22.9 azs22.10 azs22.19 zp22/6 zp22/D87 azs22.16(fl2)

BSSS53B73

Relative levels of mRNA in inbred parents

Page 27: 1st National Conference on Biotechnology Lima, Peru, 12 de ...perubiotec.org/PDFs/3_J_Messing-Genomics_in_the_Gramineae.pdf · 1st National Conference on Biotechnology Lima, Peru,

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

azs22.14 azs22.4 azs22.7 azs22.8 azs22.9 azs22.10 azs22.19 zp22/6 zp22/D87 azs22.16(f l2)

BSSS53BSSS53xB73B73xBSSS53B73

Relative levels of mRNA in hybrids

Page 28: 1st National Conference on Biotechnology Lima, Peru, 12 de ...perubiotec.org/PDFs/3_J_Messing-Genomics_in_the_Gramineae.pdf · 1st National Conference on Biotechnology Lima, Peru,

Mo17 B73

Hybrid 0 25000 50000 75000 100000 125000 150000

0 25000 50000 75000 100000

0 25000 50000 75000 100000 125000 150000

1

2

2

1

1

3

3

3

4

4

4 4a 4b

4a 4b

5

5

5

Parent A

Parent B

Recombinant

meiosis

Illustration of haplotype shuffling through meiosis

Page 29: 1st National Conference on Biotechnology Lima, Peru, 12 de ...perubiotec.org/PDFs/3_J_Messing-Genomics_in_the_Gramineae.pdf · 1st National Conference on Biotechnology Lima, Peru,

• Sequencing entire genomes has provided us with the entire set of genes of many organisms.

• Plant species appear to have very large gene sets, but vary in gene number over a large range.

• Genes are duplicated by polyploidy (orthology) or amplification (paralogy); copies of genes are also deleted and mobile.

• Gene amplification (e.g. α zein genes) can contribute to the penetrance of certain phenotypes (e.g. opaque-2); RNAi produces dominant opaque phenotype.

• Non-allelic gene copies, if expressed, provide unique properties to inbreds and hybrids because recombination occurs via allelic copies only.

Highlights

• Recognizing these new features in plant genomes has important implications for genetic maps, penetrance of phenotypes, quantitative traits, and heterosis.

Page 30: 1st National Conference on Biotechnology Lima, Peru, 12 de ...perubiotec.org/PDFs/3_J_Messing-Genomics_in_the_Gramineae.pdf · 1st National Conference on Biotechnology Lima, Peru,

MIPS: Klaus Mayer, Heidrun Gundlach, Georg Haberer

Acknowledgements WEB site: http://pgir.rutgers.edu/

Maize map (Wing, Soderlund, Coe, Paterson) Fusheng Wei, Will Nelson, Hye-Ran Kim, Yeisoo Yu

Sorghum (JGI/UG) Rokshar, Paterson, Mayer http://www.phytozome.net/cgi-bin/gbrowse/sorghum/ Nature (2009), 457(7229):551-6.

Sorghum: Remy Bruggmann Maize origin: Zuzana Swigonova Maize map and BACs: Arvind Bharti Galina Fuks Segmental duplication: Jian-Hong Xu Prolamin genes: Mihai Miclaus, Jian-Hong Xu


Recommended