+ All Categories
Home > Documents > Algebra Lineal 3 Espacios Vectoriales

Algebra Lineal 3 Espacios Vectoriales

Date post: 25-Feb-2018
Category:
Upload: david-vera
View: 227 times
Download: 1 times
Share this document with a friend

of 16

Transcript
  • 7/25/2019 Algebra Lineal 3 Espacios Vectoriales

    1/16

    4

    4.3

    2016 Pearson Education, Inc.

    Vector Spaces

    LINEARLY INDEPENDENTSETS; BASES

  • 7/25/2019 Algebra Lineal 3 Espacios Vectoriales

    2/16

    Slide 4.3- 2 2016 Pearson Education, Inc.

    LINEAR INDEPENDENT SETS; BASES

    An indexed set of vectors {v1, , vp} in Vis said to

    be linearly independentif the vector equation

    (1)

    has onlythe trivial solution, . he set {v1, , vp} is said to be linearly dependent

    if (1) has a nontrivial solution, i.e., if there are so!e

    "ei#hts, c1, , cp, not all zero, such that (1) holds. $n such a case, (1) is called a linear dependence

    relationa!on# v1, , vp.

    1 1 % %v v ... v &

    p pc c c+ + + =

    1 &,..., &pc c= =

  • 7/25/2019 Algebra Lineal 3 Espacios Vectoriales

    3/16

    Slide 4.3- 3

    LINEAR INDEPENDENT SETS; BASES

    Theorem 4:An indexed set {v1, , vp} of t"o or!ore vectors, "ith , is linearl' dependent if

    and onl' if so!e vj("ith ) is a linear

    co!bination of the precedin# vectors, .

    Definition:etHbe a subspace of a vector space V.

    An indexed set of vectors B in Vis a

    basis forHif(i) Bis a linearl' independent set, and

    (ii) he subspace spanned b' Bcoincides "ithH

    that is,

    2016 Pearson Education, Inc.

    1v &

    1j>

    1{b ,...,b }

    p=

    1

    Span{b ,...,b }p

    H=

    1 1v ,...,v

    j

  • 7/25/2019 Algebra Lineal 3 Espacios Vectoriales

    4/16

    Slide 4.3- 4

    LINEAR INDEPENDENT SETS; BASES

    he definition of a basis applies to the case "hen ,

    because an' vector space is a subspace of itself.

    hus a basis of Vis a linearl' independent set thatspans V.

    *hen , condition (ii) includes the require!ent that

    each of the vectors b1, , bp!ust belon# toH, because

    Span {b1, , bp} contains b1, , bp.

    2016 Pearson Education, Inc.

    H V=

    H V

  • 7/25/2019 Algebra Lineal 3 Espacios Vectoriales

    5/16

    Slide 4.3- 5

    STANDARD BASIS

    et e1, , enbe the colu!ns of the !atrix,In. hat is,

    he set {e1, , en} is called the standard basisfor . See

    the follo"in# fi#ure.

    2016 Pearson Education, Inc.

    n n

    1 %

    1 & &

    & 1e ,e ,...,e

    && & 1

    n

    = = =

    M

    M M

  • 7/25/2019 Algebra Lineal 3 Espacios Vectoriales

    6/16

    Slide 4.3- 6

    THE SPANNING SET THEOREM

    Theorem 5:et be a set in V, andlet .

    a. $f one of the vectors in S+sa', vk+is a linear

    co!bination of the re!ainin# vectors in S,

    then the set for!ed fro! Sb' re!ovin# vkstillspansH.

    b. $f , so!e subset of Sis a basis forH.

    Proof:a. ' rearran#in# the list of vectors in S, if

    necessar', "e !a' suppose that vpis a linear

    co!bination of +sa',

    2016 Pearson Education, Inc.

    1{v ,...,v }

    pS=

    1Span{v ,...,v }

    pH=

    {&}H

    1 1v ,...,v

    p

  • 7/25/2019 Algebra Lineal 3 Espacios Vectoriales

    7/16Slide 4.3- 7

    THE SPANNING SET THEOREM

    (-)

    iven an' xinH, "e !a' "rite

    (/)

    for suitable scalars c1, , cp.

    Substitutin# the expression for vpfro! (-) into(/), it is eas' to see that xis a linear

    co!bination of .

    hus spansH, because x"as anarbitrar' ele!ent ofH.

    2016 Pearson Education, Inc.

    1 1 1 1

    v v ... vp p p

    a a = + +

    1 1 1 1x v ... v v

    p p p pc c c

    = + + +

    1 1

    v ,...vp

    1 1{v ,...,v }

    p

  • 7/25/2019 Algebra Lineal 3 Espacios Vectoriales

    8/16Slide 4.3- 8

    THE SPANNING SET THEOREM

    b. $f the ori#inal spannin# set Sis linearl'independent, then it is alread' a basis forH.

    0ther"ise, one of the vectors in Sdepends on

    the others and can be deleted, b' part (a).

    So lon# as there are t"o or !ore vectors inthe spannin# set, "e can repeat this process

    until the spannin# set is linearl' independent

    and hence is a basis forH.

    $f the spannin# set is eventuall' reduced to

    one vector, that vector "ill be nonero (and

    hence linearl' independent) because .

    2016 Pearson Education, Inc.

    {&}H

  • 7/25/2019 Algebra Lineal 3 Espacios Vectoriales

    9/16Slide 4.3- 9

    THE SPANNING SET THEOREM

    Example 7:et , ,

    and .

    2ote that , and sho" that

    . hen find a basisfor the subspaceH.

    Solution:3ver' vector in Span {v1, v%} belon#s toHbecause

    2016 Pearson Education, Inc.

    1

    &v %

    1

    =

    %

    %v %

    &

    =

    -

    4v 14

    5

    =

    1 % -Span{v ,v ,v }H=

    - 1 %v 5v -v= +

    1 % - 1 %Span{v , v , v } Span{v ,v }=

    1 1 % % 1 1 % % -v v v v &vc c c c+ = + +

  • 7/25/2019 Algebra Lineal 3 Espacios Vectoriales

    10/16Slide 4.3- 10

    THE SPANNING SET THEOREM

    2o" let xbe an' vector inH+sa',

    .

    Since , "e !a' substitute

    hus xis in Span {v1, v%}, so ever' vector inHalread'

    belon#s to Span {v1, v%}.

    *e conclude thatHand Span {v1, v%} are actuall' the

    set of vectors.

    $t follo"s that {v1, v%} is a basis ofHsince {v1, v%} is

    linearl' independent. 2016 Pearson Education, Inc.

    1 1 % % - -x v v vc c c= + +

    - 1 %v 5v -v= +

    1 1 % % - 1 %

    1 - 1 % - %

    x v v (5v -v )

    ( 5 )v ( - )v

    c c c

    c c c c

    = + + +

    = + + +

  • 7/25/2019 Algebra Lineal 3 Espacios Vectoriales

    11/16Slide 4.3- 11

    BASIS FOR COL B

    Example 8:6ind a basis for 7olB, "here

    Solution:3ach nonpivot colu!n ofBis a linear

    co!bination of the pivot colu!ns. $n fact, and .

    ' the Spannin# Set heore!, "e !a' discard b%and

    b/, and {b1, b-, b5} "ill still span 7olB.

    2016 Pearson Education, Inc.

    1 % 5

    1 / & % &

    & & 1 1 &b b b

    & & & & 1

    & & & & &

    B

    = =

    L

    % 1b /b=

    / 1 -b %b b=

  • 7/25/2019 Algebra Lineal 3 Espacios Vectoriales

    12/16Slide 4.3- 12

    BASIS FOR COL B

    et

    Since and no vector in Sis a linearco!bination of the vectors that precede it, Sis

    linearl' independent. (heore! /).

    hus Sis a basis for 7olB.

    2016 Pearson Education, Inc.

    1 - 5

    1 & && 1 &

    {b ,b ,b } , ,& & 1

    & & &

    S

    = =

    1b &

  • 7/25/2019 Algebra Lineal 3 Espacios Vectoriales

    13/16Slide 4.3- 13

    BASES FOR NUL AAND COL A

    Theorem :he pivot colu!ns of a !atrixAfor! a

    basis for 7olA.

    Proof:etBbe the reduced echelon for! ofA.

    he set of pivot colu!ns ofBis linearl' independent,for no vector in the set is a linear co!bination of thevectors that precede it.

    SinceAis ro" equivalent toB, the pivot colu!ns of

    Aare linearl' independent as "ell, because an' lineardependence relation a!on# the colu!ns ofAcorresponds to a linear dependence relation a!on#the colu!ns ofB.

    2016 Pearson Education, Inc.

  • 7/25/2019 Algebra Lineal 3 Espacios Vectoriales

    14/16

    Slide 4.3- 14

    BASES FOR NUL AAND COL A

    6or this reason, ever' nonpivot colu!n ofAis a linear

    co!bination of the pivot colu!ns ofA.

    hus the nonpivot colu!ns of a !a' be discarded fro!

    the spannin# set for 7olA, b' the Spannin# Set

    heore!. his leaves the pivot colu!ns ofAas a basis for 7olA.

    !arnin":he pivot colu!ns of a !atrixAare evident

    "henAhas been reduced onl' to echelon for!.

    ut, be careful to use the pivot colu!ns ofAitself for

    the basis of 7olA.

    2016 Pearson Education, Inc.

  • 7/25/2019 Algebra Lineal 3 Espacios Vectoriales

    15/16

    Slide 4.3- 15

    BASES FOR NUL AAND COL A

    8o" operations can chan#e the colu!n space of a!atrix.

    he colu!ns of an echelon for!BofAare often notin the colu!n space ofA.

    T#o $ie#s of a %asis

    *hen the Spannin# Set heore! is used, the deletionof vectors fro! a spannin# set !ust stop "hen the set

    beco!es linearl' independent. $f an additional vector is deleted, it "ill not be a

    linear co!bination of the re!ainin# vectors, andhence the s!aller set "ill no lon#er span V.

    2016 Pearson Education, Inc.

  • 7/25/2019 Algebra Lineal 3 Espacios Vectoriales

    16/16

    Slide 4.3- 16

    TWO VIEWS OF A BASIS

    hus a basis is a spannin# set that is as s!all aspossible.

    A basis is also a linearl' independent set that is aslar#e as possible.

    $f Sis a basis for V, and if Sis enlar#ed b' one vector

    +sa', #+fro! V, then the ne" set cannot be linearl'independent, because Sspans V, and #is therefore alinear co!bination of the ele!ents in S.

    2016 Pearson Education, Inc.


Recommended