+ All Categories
Home > Documents > Emerging Trends in Embedded Systems and Applications

Emerging Trends in Embedded Systems and Applications

Date post: 07-Apr-2018
Category:
Upload: cees-jan-stam
View: 224 times
Download: 0 times
Share this document with a friend
5
Emerging trends in embedded systems and applications Ramachandra Budihal 7/18/2010 4:25 PM EDT The embedded systems industry was born with the invention of microcontrollers and since then it has evolved into various forms, from primarily being designed for machine c ontrol applications to various other new verticals with the convergence of communications. Various classes of embedded systems such as home media systems, portable players, smart phones, embedded medical devices and sensors, automotive embedded systems have surrounded us and with continued convergence of communications and computing functions within these devices, embedded systems are transforming themselves into really complex systems, thus creating newer op portunities and challenges to develop and market more powerful, energy efficient processors, peripherals and other accessories. An embedded system is more than the electronics as most people perceive it. It has e lectronics  both digital and analog, special purpose sensors and actuators, software, mechanical items etc., and with design challenges of space, weight, cost and power consumption. Its important characteristics are low-power, real-time responsiveness, low thermal dissipation, small physical form factor/footprint, low radiation/emission, ruggedness in design and impervious to external radiations etc. In order to achieve key requirements, generally embedded systems are restricted to limited resources in terms of computing, memory, display size etc. With continued convergence of other technologies a lot more functionalities are being pushed into embedded devices which were once part of traditional computing platforms. This further adds a major “decision challenge” for architects and product managers on selection of processors, opera ting systems, standards of usage etc., as demands on functionality increase with time to market decreases. Patterns insight from the applications of embedded systems in real life Embedded systems are more than part of human life. For instance, one cannot imagine life without mobile phones for personal communication. Its presence is virtually unavoidable in almost all facets of human endeavor. While we search on patterns in each of these application spaces, we can clearly identify the trend as to where the future of embedded systems is heading. Multicore in embedded With a lot functionalities being added, the need for high performance in embedded systems has become inevitable and so developers are increasingly leaning towards multicore processors in their systems design decision. While this range of new applications also demands low thermals in small form factor setting, the mechanicals and packaging is also becoming a sub specialization of its own. Conventionally, chip manufacturers developed faster single core processors to meet the ever increasing performance requirements but soon they realized that increasing frequency, though offered certain benefits had drawbacks too such as: It drove to higher power consumption and so the higher thermals; Overall cost increased as the peripherals surrounding also needed to operate at matching speed, which was truly not practical in all cases, there by driving the costs. This paradigm is a serious drawback for embedded computing requirements, so semiconductor manufacturers have recognized that the way forward is to build processors that run at lower frequency and voltages but include parallel cores onto single chip. The overall performance increases because multicores can perform more than one task at given point of time. Today most of the gaming consoles are multicore and so are smartphones, which are indeed getting 'smarter'. While this multicore paradigm offers benefits, there is also ample opportun ity for the engineers to realign/relearn on this new design space on architecture, design, programming, debugging and testing so that
Transcript
Page 1: Emerging Trends in Embedded Systems and Applications

8/4/2019 Emerging Trends in Embedded Systems and Applications

http://slidepdf.com/reader/full/emerging-trends-in-embedded-systems-and-applications 1/5

Emerging trends in embedded systems and applications

Ramachandra Budihal 

7/18/2010 4:25 PM EDT 

The embedded systems industry was born with the invention of microcontrollers and since then it has evolved into

various forms, from primarily being designed for machine control applications to various other new verticals with

the convergence of communications.

Various classes of embedded systems such as home media systems, portable players, smart phones, embedded

medical devices and sensors, automotive embedded systems have surrounded us and with continued

convergence of communications and computing functions within these devices, embedded systems are

transforming themselves into really complex systems, thus creating newer opportunities and challenges to

develop and market more powerful, energy efficient processors, peripherals and other accessories.

An embedded system is more than the electronics as most people perceive it. It has electronics – both digital and

analog, special purpose sensors and actuators, software, mechanical items etc., and with design challenges of

space, weight, cost and power consumption. Its important characteristics are low-power, real-time

responsiveness, low thermal dissipation, small physical form factor/footprint, low radiation/emission, ruggedness

in design and impervious to external radiations etc.

In order to achieve key requirements, generally embedded systems are restricted to limited resources in terms of

computing, memory, display size etc. With continued convergence of other technologies a lot more functionalities

are being pushed into embedded devices which were once part of traditional computing platforms. This further

adds a major “decision challenge” for architects and product managers on selection of processors, operating

systems, standards of usage etc., as demands on functionality increase with time to market decreases.

Patterns insight from the applications of embedded systems in real life 

Embedded systems are more than part of human life. For instance, one cannot imagine life without mobile

phones for personal communication. Its presence is virtually unavoidable in almost all facets of human endeavor.

While we search on patterns in each of these application spaces, we can clearly identify the trend as to where thefuture of embedded systems is heading.

Multicore in embedded

With a lot functionalities being added, the need for high performance in embedded systems has become

inevitable and so developers are increasingly leaning towards multicore processors in their systems design

decision. While this range of new applications also demands low thermals in small form factor setting, the

mechanicals and packaging is also becoming a sub specialization of its own.

Conventionally, chip manufacturers developed faster single core processors to meet the ever increasing

performance requirements but soon they realized that increasing frequency, though offered certain benefits had

drawbacks too such as:

• It drove to higher power consumption and so the higher thermals;

• Overall cost increased as the peripherals surrounding also needed to operate at matching speed, which was

truly not practical in all cases, there by driving the costs.

This paradigm is a serious drawback for embedded computing requirements, so semiconductor manufacturers

have recognized that the way forward is to build processors that run at lower frequency and voltages but include

parallel cores onto single chip. The overall performance increases because multicores can perform more than one

task at given point of time.

Today most of the gaming consoles are multicore and so are smartphones, which are indeed getting

'smarter'. While this multicore paradigm offers benefits, there is also ample opportunity for the engineers torealign/relearn on this new design space – on architecture, design, programming, debugging and testing so that

Page 2: Emerging Trends in Embedded Systems and Applications

8/4/2019 Emerging Trends in Embedded Systems and Applications

http://slidepdf.com/reader/full/emerging-trends-in-embedded-systems-and-applications 2/5

they are well informed and are aware about the optimal use of new power that a multicore offers.

If the benefits are not harnessed by developers then the purpose gets defeated. The eco-system for usage of

multicore is still emerging and it depends on how fast or rapidly designers are opting for change and

standardization. IDE companies have already taken lead in this regard by making necessary changes and adding

support for the new multicores and this will clearly be one of the key factors of success of usage of multicores in

embedded systems.

Another recent development is that the chip suppliers are now making and marketing new chips aiming at specific

markets. For instance, Intel launched an embedded processor aiming at the Point of sale terminal and other retail

computing applications. Intel's Celeron CPU is extensively being applied to new IP STB designs. Intel is also

developing chips for home media systems and portable media players.

Companies like Transmeta, Philips semiconductor, Netsilicon etc., are all aiming at embedded apps. Philips is all

set to introduce its LPC2000 series MCU based on ARM7 kernel, which has flash memory, RAM, ADC, CAN and

PWM channel and can be applied to automotive electronics, industry control and medical equipment, Netsilicon

as another example has NET+ARM series processors, among which NS9775 is a 32bit, 200MHz microprocessor

including four independent video channels, TI too, is planning new in its most successful OMAP architectureseries. Transmeta has Crusoe TM5700 and TM9500 and both offers better performance and form factor is halved

compared to its last generation products.

Although the demand for processing is ever increasing for new embedded applications, traditional applications

are still in mainstream and they are now offering ultra low cost and power requirements and increased onchip

memory (both RAM and Flash) with new interfaces are key differentiators companies like Atmel Corp., Microchip

Technology Inc., Infineon Technologies AG, RDC Semiconductor Co. Ltd, Epson and other companies are

featuring their respective MCU products in these space.

Embedded operating systems

Traditionally embedded systems did away with an operating system (OS), it had lightweight control

program/monitor to offer limited I/O and memory services, however, as the systems became complex, it was

inevitable to have OS which offered low latency real-time response, low foot print both in time and space and give

all traditional functionality such as memory protection, error checking/report and transparent interprocess

communication, which can be applied to communications, consumer electronics, industry controls, automotive

electronics and aerospace/national defense.

Emerging multicore also needs multimission, multithread, multiprocess, multiprocessor, multiboard debugging and

has to operate on open source tool chains such as eclipse etc., most of the new designs today are moving away

from proprietary OS and tool chains and are more and more opting for opensource platforms both of development

and deployment as the key market differentiator for them is cost.

Royalty free licensing deployment is the key for reducing the end user costs so OS like Linux embedded and new

OS such as Android are making inroads into places where traditionally Windows CE/Vxworks etc., used to play.Today many new handhelds and smart phones are embracing Andriod.

Even Wind River (acquired by Intel has embraced Linux and now offers it in its portfolio of products. Eclipse, the

open source project for building development platforms offers an environment that crosses over RTOS

boundaries. It comprises extensible frameworks, tools and runtimes for building, deploying and managing

software throughout its lifecycle.

Embedded digital security and surveillance 

In the ever increasing interconnected world, Digital embedded security is no more an option but a necessity as it

is very critical for more transactions happening over embedded devices as front ends. Due to constrained

resources on systems, embedded systems have challenges in implementation on full fledged security systems

therefore the concept of 'embedded security' offers a new differentiator for embedded product marketing.

Page 3: Emerging Trends in Embedded Systems and Applications

8/4/2019 Emerging Trends in Embedded Systems and Applications

http://slidepdf.com/reader/full/emerging-trends-in-embedded-systems-and-applications 3/5

 

Digital security and surveillance is currently in the host of new applications in the embedded arena which is

benefiting from multicore phenomenon. Older systems needed more human intervention, but new systems offer

intelligent systems to operate multisite, integrated and net centric systems that optimizes the resources needed to

complete the job. The applications based on computer vision and tracking offers multiple benefits in capturing,

post processing and identification and alerting of security video in realtime.

Convergence embedded systems and applications 

The retail segment is one of the fastest growing segments in emerging markets and the trend in retail markets is

moving towards improving the user experience, which is most certainly setting trend towards increased

performance, connectivity and rich graphics.

A point-of-sale terminal (PoS) is a great example of this - the latest PoS devices incorporate dual-display for

advertising, complex accounting applications and are increasingly connected to a central server for remote

management. Back end integration with web/online stores from these embedded devices offers to bring in latest

offers onto their connected mobiles instantly if they are planning to buy certain item. The location based marketing

applications and convergence of Bluetooth based retail communication marketing space is offering new

paradigms of sales and marketing which is beneficial for both sellers and buyers.

Healthcare

Electronic medical device and other technological innovations with the convergence of biotech, nanotech,

manufacturing tech, communication tech and device, sensor technologies are making breathtaking

transformations in healthcare delivery and creating new health care paradigms.

Bio med devices tech is being applied into wide variety of analytical problems including medicine, surgery and

drug discovery, these devices are portable diagnostic imaging and home monitoring such as cholesterol monitors,

blood glucose meters and with recent innovations paving way for miniaturization of devices, replacement organs

and tissues, earlier use of more accurate diagnostics, and advances in information technology, became available

thru Silicon Chip revolution.

The fastest growing markets within medical for semiconductors are home monitoring and diagnostic devices,

telemetry, and diagnostic imaging applications. Interestingly the convergence of wireless communication with the

sensors created the BAN – body area network which is today used to monitor, heart – ECG, pulse rate,

temperature, oxygen, blood pressure etc., sleep disorders can also be monitored using a clip device fixed to head

band.

For instance, Corventis develops wireless cardiovascular solutions that offer unprecedented visibility into a

patient’s health status  – anytime, anywhere across the world. It has developed complete systems  – sensors to

monitor various critical health parameters – network to communicate between sensors and gateway, gateway

application on an iphone and backend clinical application that can store, analyse and help clinical professionals to

have unprecedented access to their patients critical system parameters. All these happened because of

advancement of sensor, computing, communication technologies.

Automotive

With drive across the world to improve on emission controls and bring in efficiency in usage of fossil fuels, the

automotive segment is challenged by various factors and embedded systems are clearly the ways and means of

achieving multiple objectives in this segment taking it from infotainment systems, engine control unit, Car-area-

network, fuel management, safety systems all need embedded to be in it.

Traffic management and prediction systems are being developed for large cities across the world today and the

critical systems that has to support this is M2M or V2V communication networks that, form adhoc networks,

seamlessly gather information from multiple sources, fuse and make decision that not only help the car users but

also city traffic managers.

The realtime management of this is possible only by having embedded computing and communication systems

Page 4: Emerging Trends in Embedded Systems and Applications

8/4/2019 Emerging Trends in Embedded Systems and Applications

http://slidepdf.com/reader/full/emerging-trends-in-embedded-systems-and-applications 4/5

that are part of the vehicle and the network. The usage of vehicle tracking and fleet tracking has already been

beneficial for the operators by reducing their opex and downtime which has enhanced the customer satisfaction.

This apart, media oriented systems transport (MOST) is one of the technologies being deployed by OEMs for

multimedia and infotainment networking. This technology is designed to provide an efficient and cost-effective

fabric to transmit audio, video, data and control information between devices attached even to the harsh

environment of an automobile.

Entertainment

While we have seen mobiles, handhelds, ipods etc., have changed the landscape of the personal entertainment in

the world in the recent past, the emerging trend is adding more intelligence in the personal entertainment,

communication devices by converging the social networks, city information, location based services and choices

and profile of the users.

All these are going to be delivered through the continuous gathering of intelligence, choices and users and recent

transactions. The devices are becoming multimodal, iPod and other new androids offer gesture recognition and

also the new devices are offering augmented reality applications that are going to be future killer applications forsmart phones – integration of real physical world with the virtual computing world  – this drives the camera,

display, MEMS based position and other tracking device technology to advance in the smart phone/tablets.

Localization and internationalization 

For all these devices to be sold in world-wide markets, they need to be supported both locally and internationally.

The access to global markets can happen only with localization/personalization of features in the device with

multi-language support and also backend support offices that offer customized localized services. The usage of

different font technologies & adapting newer ones are the key for embedded systems that are human centric to

survive and thrive in the market so more and more device manufacturers are working with local partners to ensure

that their embedded devices and support systems are localized and offer multi-language local culture flavor in

definitive terms. -

Lastly, the future of embedded lies in how faster people adapt to the changes offered by convergence  – 

communications, nano, manufacturing and develop “super” applications that advance the society and human

needs, let’s hope that our future is also embedded into it.

About the Author:

Ramachandra Budihal is a software architect at Wipro Technologies, with geek credentials going back two

decades. Having worked in h/w board designs initially and later moved into embedded system software. He hasarchitected many embedded systems using DSPs in the areas of video, audio, modem functionalities in the

past. He is one of the founding members of the Aerospace Network Research consortium - a collaborative

Page 5: Emerging Trends in Embedded Systems and Applications

8/4/2019 Emerging Trends in Embedded Systems and Applications

http://slidepdf.com/reader/full/emerging-trends-in-embedded-systems-and-applications 5/5

research entity between Wipro, Boeing, HCL and Indian Institute of Science.

Currently, he researches on cognitive radio networks architectures and net centric platforms for aerospace and

defense applications. This apart personally he is very passionate about technological innovations that can impact

and touch human lives.

He is an avid cultural heritage technoconservator - he uses technologies to preserve the ancient past during hisleisure time. His latest work goes beyond paper and scans to visualize the physical world. His vision is to build

new HCI (Human computer interfaces) invoking other senses such as touch and olfactory. Using this he plans to

recreate ancient worlds. He's using augmented reality, 3D and haptic-response systems to build an immersive

virtual "time machine" of the historic town and temple complex, called Hampi, now a threatened UNESCO World

Heritage Site. It's called Digital Hampi: From Ruins to Glory, and the setup, with a touchscreen and head-mounted

display, will allow curious people to "walk" through the ancient city to truly transform themselves as the citizens of

that glorious ancient empire of India. He spoke and demonstrated this concept at famous TED conference at

Mysore in 2009.

He is also recipient of a Presidential honour “Vyas Samman" conferred to him in 20 07 by President of India in

recognition of his breakthrough work done in the area of cultural heritage preservation and promotion using

technology. He is also listed in Marquis who-is-who of the world 2010 edition.


Recommended