+ All Categories
Home > Documents > ISL70061SEH, ISL73061SEH Datasheet...(ISL70061SEH only); or over a total ionizing dose of 75krad(Si)...

ISL70061SEH, ISL73061SEH Datasheet...(ISL70061SEH only); or over a total ionizing dose of 75krad(Si)...

Date post: 11-Aug-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
23
R34DS0004EU0102 Rev.1.02 Page 1 of 23 Dec.11.19 ISL70061SEH, ISL73061SEH Radiation Hardened 10A PMOS Load Switch Datasheet The ISL70061SEH and ISL73061SEH (ISL7x061SEH) are radiation hardened single channel load switches featuring ultra-low r ON and controlled rise time. These devices use a PMOS pass device as the main switch that operates across an input voltage range of 3V to 5.5V and can support a maximum of 10A continuous current. Simple ON/OFF digital control inputs make the device capable of interfacing directly with low voltage control signals from an FPGA, MCU, or processor. Additional features include reverse current protection to stop current from flowing toward the input when the output SWO voltage increases above the input SWI voltage, a selectable 122Ω MOSFET to discharge the output, and Undervoltage Lockout (UVLO) protection that keeps the switch OFF when the input voltage is too low. The ISL7x061SEH devices operate across the military temperature range from -55°C to +125°C and are available in a 14 Ld hermetically sealed Ceramic Dual Flatpack (CDFP) package or in die form. Applications Satellites power distribution management Power system redundancy Power sequencing Power system fault management Space VPX systems Features Electrically screened to DLA SMD 5962-19208 Integrated high speed load switch Turn-off time of 3μs Ultra-low ON-resistance (r ON ) of 14mΩ typical Continuous 10A switch current Controlled rise time to minimize inrush current Reverse current protection Simple ON/OFF logic control Undervoltage lockout Selectable 122Ω discharge MOSFET Radiation acceptance testing - ISL70061SEH HDR (50-300rad(Si)/s): 100krad(Si) LDR (0.01rad(Si)/s): 75krad(Si) Radiation acceptance testing - ISL73061SEH LDR (0.01rad(Si)/s): 75krad(Si) SEE hardness (see SEE report for details) No SEB/SEL LET TH , SWI, SWO, ON, DON = 6.7V: 86MeV•cm 2 /mg Related Literature For a full list of related documents, visit our website: ISL70061SEH and ISL73061SEH device pages Figure 1. Redundant Source Switch Application Figure 2. r ON vs Current vs Temperature ISL70003ASEH Load 1 ISL70061SEH ISL70061SEH ISL70003ASEH 0 5 10 15 20 25 1 2 3 4 5 6 7 8 9 10 r ON (mΩ) Switch Current (A) -55°C 25°C 125°C V SWI = 5.5V
Transcript
Page 1: ISL70061SEH, ISL73061SEH Datasheet...(ISL70061SEH only); or over a total ionizing dose of 75krad(Si) at +25°C with exposure at a low dose rate of

R34DS0004EU0102 Rev.1.02 Page 1 of 23Dec.11.19

ISL70061SEH, ISL73061SEHRadiation Hardened 10A PMOS Load Switch

Datasheet

The ISL70061SEH and ISL73061SEH (ISL7x061SEH) are radiation hardened single channel load switches featuring ultra-low rON and controlled rise time. These devices use a PMOS pass device as the main switch that operates across an input voltage range of 3V to 5.5V and can support a maximum of 10A continuous current. Simple ON/OFF digital control inputs make the device capable of interfacing directly with low voltage control signals from an FPGA, MCU, or processor.

Additional features include reverse current protection to stop current from flowing toward the input when the output SWO voltage increases above the input SWI voltage, a selectable 122Ω MOSFET to discharge the output, and Undervoltage Lockout (UVLO) protection that keeps the switch OFF when the input voltage is too low.

The ISL7x061SEH devices operate across the military temperature range from -55°C to +125°C and are available in a 14 Ld hermetically sealed Ceramic Dual Flatpack (CDFP) package or in die form.

Applications• Satellites power distribution management

• Power system redundancy

• Power sequencing

• Power system fault management

• Space VPX systems

Features• Electrically screened to DLA SMD 5962-19208

• Integrated high speed load switch

○ Turn-off time of 3µs

• Ultra-low ON-resistance (rON) of 14mΩ typical

• Continuous 10A switch current

• Controlled rise time to minimize inrush current

• Reverse current protection

• Simple ON/OFF logic control

• Undervoltage lockout

• Selectable 122Ω discharge MOSFET

• Radiation acceptance testing - ISL70061SEH

○ HDR (50-300rad(Si)/s): 100krad(Si)

○ LDR (0.01rad(Si)/s): 75krad(Si)

• Radiation acceptance testing - ISL73061SEH

○ LDR (0.01rad(Si)/s): 75krad(Si)

• SEE hardness (see SEE report for details)

○ No SEB/SEL LETTH, SWI, SWO, ON, DON = 6.7V: 86MeV•cm2/mg

Related LiteratureFor a full list of related documents, visit our website:

• ISL70061SEH and ISL73061SEH device pages

Figure 1. Redundant Source Switch Application Figure 2. rON vs Current vs Temperature

ISL70003ASEH Load 1

ISL70061SEH

ISL70061SEH

ISL70003ASEH 0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10

r ON

(mΩ

)

Switch Current (A)

-55°C25°C125°CVSWI = 5.5V

Page 2: ISL70061SEH, ISL73061SEH Datasheet...(ISL70061SEH only); or over a total ionizing dose of 75krad(Si) at +25°C with exposure at a low dose rate of

ISL70061SEH, ISL73061SEH

R34DS0004EU0102 Rev.1.02 Page 2 of 23Dec.11.19

Contents

1. Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1 Typical Application Diagrams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Pin Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2. Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Thermal Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.5 Test Circuits and Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3. Typical Performance Curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4. Applications Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.2 rON of the Die vs Packaged Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.3 Undervoltage Lockout (UVLO). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.4 ON Logic Input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.5 DON Logic Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.6 Controlled Rise Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.7 Reverse Current Protection (RCP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.8 Turn-Off Inductive Voltage Transient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.9 Power Supply Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.10 Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.11 Die and Assembly Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.12 Metallization Mask Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5. Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6. Package Outline Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Page 3: ISL70061SEH, ISL73061SEH Datasheet...(ISL70061SEH only); or over a total ionizing dose of 75krad(Si) at +25°C with exposure at a low dose rate of

ISL70061SEH, ISL73061SEH 1. Overview

R34DS0004EU0102 Rev.1.02 Page 3 of 23Dec.11.19

1. Overview

1.1 Typical Application Diagrams

Figure 3. Redundant Load Application Diagram

Figure 4. Parallel Configuration to Reduce Resistance or Increase Current Capability

Figure 5. Front-End Protection Switch Application

ISL70003ASEH Load 1

Load 2

Load 3

ISL70061SEH

ISL70061SEH

ISL70061SEH

ISL70002ASEH Load

ISL70061SEH

ISL70061SEH

3.3V – 5V

VREF

IN1

External OC Comparator

ISL70002SEHPower Conditioning

and Distribution Unit

ISL70061SEH

Page 4: ISL70061SEH, ISL73061SEH Datasheet...(ISL70061SEH only); or over a total ionizing dose of 75krad(Si) at +25°C with exposure at a low dose rate of

ISL70061SEH, ISL73061SEH 1. Overview

R34DS0004EU0102 Rev.1.02 Page 4 of 23Dec.11.19

1.2 Functional Block Diagram

Figure 6. Power Distribution based on POL Converters

Figure 7. Block Diagram

Vbus

POL 1

POL n

OutputLoad Switch

OutputLoad Switch

InputLoad Switch

InputLoad Switch

IntermediateBus Converter

IBV

Body Dragger

122Ω

ON

SWO

GND

2MΩ

DON

Slew Rate

Control

Logic

Control

Reverse Current Protection

UVLO

ON

Control

DON

Control

SWI

2MΩ

PMOS

Page 5: ISL70061SEH, ISL73061SEH Datasheet...(ISL70061SEH only); or over a total ionizing dose of 75krad(Si) at +25°C with exposure at a low dose rate of

ISL70061SEH, ISL73061SEH 1. Overview

R34DS0004EU0102 Rev.1.02 Page 5 of 23Dec.11.19

1.3 Ordering Information

Ordering SMDNumber (Note 1) Part Number (Note 2)

Radiation Hardness(Total Ionizing Dose)

Temperature Range (°C)

Package(RoHS Compliant)

PackageDrawing

5962R1920801VXC ISL70061SEHVF HDR to 100krad(Si), LDR to 75krad(Si)

-55 to +125 14 Ld CDFP K14.C

5962R1920801V9A ISL70061SEHVX (Note 3) -55 to +125 Die N/A

5962L1920802VXC ISL73061SEHVF LDR to 75krad(Si) -55 to +125 14 Ld CDFP K14.C

5962L1920802V9A ISL73061SEHVX (Note 3) -55 to +125 Die N/A

N/A ISL70061SEHF/PROTO (Note 4) N/A -55 to +125 14 Ld CDFP K14.C

N/A ISL73061SEHF/PROTO (Note 4) N/A -55 to +125 14 Ld CDFP K14.C

N/A ISL70061SEHX/SAMPLE (Notes 3, 4) N/A -55 to +125 Die N/A

N/A ISL73061SEHX/SAMPLE (Notes 3, 4) N/A -55 to +125 Die N/A

N/A ISL70061SEHEV1Z (Note 5) Evaluation Board

Notes:1. Specifications for Rad Hard QML devices are controlled by the Defense Logistics Agency Land and Maritime (DLA). The SMD numbers

listed must be used when ordering.

2. These Pb-free Hermetic packaged products employ 100% Au plate - e4 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations.

3. Die product tested at TA = + 25°C. The wafer probe test includes functional and parametric testing sufficient to make the die capable of meeting the electrical performance outlined in “Electrical Specifications” on page 7.

4. The /PROTO and /SAMPLE are not rated or certified for Total Ionizing Dose (TID) or Single Event Effect (SEE) immunity. These parts are intended for engineering evaluation purposes only. The /PROTO parts meet the electrical limits and conditions across temperature specified in the DLA SMD and are in the same form and fit as the qualified device. The /SAMPLE parts are capable of meeting the electrical limits and conditions specified in the DLA SMD. The /SAMPLE parts do not receive 100% screening across temperature to the DLA SMD electrical limits. These part types do not come with a Certificate of Conformance because they are not DLA qualified devices.

5. Evaluation board uses the /PROTO parts and /PROTO parts are not rated or certified for Total Ionizing Dose (TID) or Single Event Effect (SEE) immunity.

Table 1. Key Features Between Family of Parts

DeviceChannel

TypeVCC Supply Bias Voltage

SWI Input Voltage Range rON tRISE

Selectable Output Discharge

MOSFETCurrent Rating

Reverse Current

Protection

ISL7x061SEH PMOS Not Required 3V to 5.5V 14mΩat VSWI = 5.5V

625µsat VSWI = 5.5V

Yes 10A Yes

ISL7x062SEH NMOS Yes (3V to 5.5V)

0 to (VCC - 2V) 25mΩ at VSWI = 3.5V

2225µs at VSWI = 3V

Yes 10A Yes

Page 6: ISL70061SEH, ISL73061SEH Datasheet...(ISL70061SEH only); or over a total ionizing dose of 75krad(Si) at +25°C with exposure at a low dose rate of

ISL70061SEH, ISL73061SEH 1. Overview

R34DS0004EU0102 Rev.1.02 Page 6 of 23Dec.11.19

1.4 Pin Configuration

1.5 Pin Descriptions

14Ld CDFPTop View

Pin Number Pin Name ESD Circuit Description

1 - 6 SWI 1 Switch input.

7 ON 2 Logic control input. ON = High: Switch ON, ON = Low: Switch OFF.

8 GND - Ground connection. Lid and External Bottom Metal are internally tied to Pin 8.

9 DON 2 Logic input to enable or disable discharge MOSFET circuit function. DON = High: Discharge MOSFET circuit enabled, DON = Low: Discharge MOSFET circuit disabled.

10 - 14 SWO 3 Switch output.

N/A LID - Internally tied to the ground pin of the package, Pin 8.

N/A Thermal Pad

- Bottom metal thermal pad for heat dissipation purposes. Internally tied to the ground pin of the package, Pin 8.

14

13

12

11

10

2

3

4

5

1SWI

SWI

SWI

SWI

ON

SWO

SWO

SWO

SWO

GND

SWI

SWI 6

7

SWO

DON9

8

Bottom Metal (Thermal Pad)

Circuit 2 Circuit 3Circuit 1

GND

7V Clamp

SWI (Pins 1 - 6)

(Only one clamp as Pins 1-6 areelectrically

tied together.)

GND

7V Clamp

SWI (Pins 10 - 14)

(Only one clamp as Pins 10-14 are

electricallytied together.)

GND

7V Clamp

Pins 7 and 9

Page 7: ISL70061SEH, ISL73061SEH Datasheet...(ISL70061SEH only); or over a total ionizing dose of 75krad(Si) at +25°C with exposure at a low dose rate of

ISL70061SEH, ISL73061SEH 2. Specifications

R34DS0004EU0102 Rev.1.02 Page 7 of 23Dec.11.19

2. Specifications

2.1 Absolute Maximum Ratings

2.2 Thermal Information

2.3 Recommended Operating Conditions

2.4 Electrical Specifications

Parameter Minimum Maximum Unit

SWI, SWO, ON, DON GND - 0.3V GND + 6.5 V

ISW Continuous Switch Current - 13.78 A

ISWP Pulsed Switch Current, Pulse ≤1ms, duty cycle 1% - 20 A

ESD Rating Value Unit

Human Body Model (Tested per MIL-STD-883 TM3015.7) 7 kV

Charged Device Model (Tested per JS-002-2014) 1 kV

CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions can adversely impact product reliability and result in failures not covered by warranty.

Thermal Resistance (Typical) θJA (°C/W) θJC (°C/W)

CDFP Package K14.C with Epoxy (Notes 6, 7) 29 3.5

CDFP Package K14.C with Solder (Notes 6, 7) 25 3.5

Notes:6. θJA is measured with the component mounted on a high-effective thermal conductivity test board (two buried 1 oz copper planes) using

“direct attach” features with package base mounted to PCB thermal land (with thermal vias below) with either a) Epoxy (10 mils thick with a “k” of 1W/m-K) or b) Solder (~2 mils thick). See TB379.

7. For θJC, the “case temp” location is the center of the package underside.

Parameter Minimum Maximum Unit

Maximum Junction Temperature - +150 °C

Storage Temperature Range -65 +150 °C

Parameter Minimum Maximum Unit

Temperature -55 +125 °C

SWI Input Voltage Range 3.0 5.5 V

ON, DON Logic Voltage Range 0 5.5 V

ISW 0 10 A

Typicals are at CSWI = 0.1µF and TA = +25°C; unless otherwise specified. Boldface limits apply across the operating temperature range, -55°C to +125°C; over a total ionizing dose of 100krad(Si) at +25°C with exposure at a high dose rate of 50 to 300rad(Si)/s (ISL70061SEH only); or over a total ionizing dose of 75krad(Si) at +25°C with exposure at a low dose rate of <10mrad(Si)/s.

Parameter Symbol Test ConditionsTemperature

(°C)Min

(Note 9)Typ

(Note 8)Max

(Note 9) Unit

Supply Currents

Quiescent Switch Current

ISWQ VSWI = 5.5V, ISWO = 0A, VDON = VSWI, VON = VSWI, Measure ISWI

-55 to +125 - 31 39 µA

VSWI = 3.6V, ISWO = 0A, VDON = VSWI, VON = VSWI, Measure ISWI

-55 to +125 - 24 29 µA

SWI Off Switch Current

ISWI(OFF) VSWI = 5.5V, RL = 1MΩ, VON = 0V, VDON = VSWI and 0V, Measure ISWI

-55 to +125 - 35 43 µA

VSWI = 3.6V, RL = 1MΩ, VON = 0V, VDON = VSWI and 0V, Measure ISWI

-55 to +125 - 27 36 µA

Page 8: ISL70061SEH, ISL73061SEH Datasheet...(ISL70061SEH only); or over a total ionizing dose of 75krad(Si) at +25°C with exposure at a low dose rate of

ISL70061SEH, ISL73061SEH 2. Specifications

R34DS0004EU0102 Rev.1.02 Page 8 of 23Dec.11.19

SWO Off Switch Current

ISWO(OFF VSWI = 5.5V, VON = VDON = 0V, VSWO = 5.5V -55 to +125 - 2.3 10 µA

VSWI = 3.6V, VON = VDON = 0V, VSWO = 3.6V -55 to +125 - 1.5 5 µA

Power Switch

Switch On Resistance

rON VSWI = 5.5V, ISWO = 1A, VON = VSWI, VDON = 0V

-55 4 9 14 mΩ

+25 8 14 19 mΩ

+125 13 19 24 mΩ

Post Radiation(+25)

8 14 19 mΩ

VSWI = 5.5V, ISWO = 1A, VON = VSWI, VDON = 0V (Note 10)

Die (+25) - 7 10 mΩ

VSWI = 3.0V, ISWO = 1A, VON = VSWI, VDON = 0V

-55 6 11 16 mΩ

+25 11 16 21 mΩ

+125 15 20 25 mΩ

Post Radiation(+25)

11 17 21 mΩ

VSWI = 3.0V, ISWO = 1A, VON = VSWI, VDON = 0V (Note 10)

Die (+25) - 9 12 mΩ

Output Discharge Switch

Discharge resistance

rDIS VSWI = 5.5V, VON = 0V, VDON = VSWI, VSW0 = 5.5V, Measure ISW0 and calculate rDIS = 5.5V / ISW0

-55 to +125 80 124 170 Ω

Post Radiation(+25)

80 122 135 Ω

VSWI = 3.0V, VON = 0V, VDON = VSWI, VSW0 = 3.0V, Measure ISW0 and calculate rDIS = 3.0V / ISW0

-55 to +125 100 167 235 Ω

Post Radiation(+25)

100 163 185 Ω

ON and DON Control Logic

Logic Input Threshold High

VON_IH VSWI = 5.5V, VDON = VSWI, VON = 0.4V, SWO = 1MΩ; Sweep VON from 0.4V to 1.2V; Measure VON when rising edge of VSWO = 50% of VSWI

-55 to +125 - - 1.2 V

VDON_IH VSWI = 5.5V, VON = 0V, VDON = 0.4V, VSWO_F = 5.5V through 1Ω resistor at SWO; Sweep VDON from 0.4V to 1.2V; Measure VON when ISWO_F > 10µA.

-55 to +125 - - 1.2 V

Logic Input Threshold Low

VON_IL VSWI = 5.5V VDON = VSWI, VON = 1.2V, SWO = 1MΩ; Sweep VON from 1.2V to 0.4V; Measure VON when falling edge of VSWO = 50% of VSWI

-55 to +125 0.4 - - V

VDON_IL VSWI = 5.5V, VON = 0V, VDON = 1.2V, VSWO_F = 3.5V through 1Ω resistor at SWO; Sweep VDON from 1.2V to 0.4V; Measure VON when ISWO_F <10µA.

-55 to +125 0.4 - - V

Logic Input Hysteresis

VONHYS VDONHYS VONHYS = VON_IH - VON_ILVDONHYS = VDON_IH - VDON_IL

-55 to +125 50 126 270 mV

Post Radiation(+25)

50 98 220 mV

Pull Down Resistance

RONPD RDONPD RONPD = VON_IH / ION RDONPD = VDON_IH / IDON

-55 to +125 2 3 4 MΩ

Typicals are at CSWI = 0.1µF and TA = +25°C; unless otherwise specified. Boldface limits apply across the operating temperature range, -55°C to +125°C; over a total ionizing dose of 100krad(Si) at +25°C with exposure at a high dose rate of 50 to 300rad(Si)/s (ISL70061SEH only); or over a total ionizing dose of 75krad(Si) at +25°C with exposure at a low dose rate of <10mrad(Si)/s.

Parameter Symbol Test ConditionsTemperature

(°C)Min

(Note 9)Typ

(Note 8)Max

(Note 9) Unit

Page 9: ISL70061SEH, ISL73061SEH Datasheet...(ISL70061SEH only); or over a total ionizing dose of 75krad(Si) at +25°C with exposure at a low dose rate of

ISL70061SEH, ISL73061SEH 2. Specifications

R34DS0004EU0102 Rev.1.02 Page 9 of 23Dec.11.19

UVLO (Under-voltage Lockout)

UVLO Falling Voltage

UVLOFalling VSWI = VON =3.0V, VDON = 0, RL = 25Ω to GND, Ramp VSWI / VON down simultaneously in -10mV steps until VSWO < 0.1V, Report this voltage as UVLOFALLING

-55 to +125 1.7 2.2 2.6 V

UVLO Rising Voltage

UVLORising VSWI = VON = 0.25V, VDON = 0, RL = 25Ω to GND, Ramp VSWI / VON up simultaneously in 10mV steps until VSWO > 1V, Report this voltage as UVLORISING

-55 to +125 1.7 2.3 2.6 V

UVLO Hysteresis UVLOHYS UVLOHYS = UVLORising - UVLOFalling -55 to +125 25 100 250 mV

Reverse Current Protection (RCP) (Note 11)

RCP Enter Threshold Voltage

VRCP_ENTER VSWI = 5.5V, VON = VSWI, VDON = 0V, Sweep VSWO from VSWI to VSWI +150mV

-55 to +125 - 112 140 mV

VSWI = 3.0V, VON = VSWI, VDON = 0V, Sweep VSWO from VSWI to VSWI +150mV

-55 to +125 - 40 70 mV

RCP Exit Threshold Voltage

VRCP_EXIT VSWI = 5.5V, VON = VSWI, VDON = 0V, Sweep VSWO from VRCP_ENTER to VSWI - 100mV

-55 to +125 -80 -40 - mV

VSWI = 3.0V, VON = VSWI, VDON = 0V, Sweep VSWO from VRCP_ENTER to VSWI - 100mV

-55 to +125 -45 -25 - mV

Timing (Note 11)

VSWO Turn-On Time

tON VSWI = 5.5V, CL = 1µF, RL = 1.8Ω, Measure from VON = VON_IH to VSWO = 10% of VSWI (see Figure 8, Figure 9, Figure 10)

-55 to +125 - 84 125 µs

VSWI = 3.0V, CL = 1µF, RL = 1Ω, Measure from VON = VON_IH to VSWO = 10% of VSWI (see Figure 8, Figure 9, Figure 10)

-55 to +125 - 98 160 µs

VSWO Rise Time tRISE VSWI = 5.5V, CL = 1µF, RL = 1.8Ω, VSWO = 10% to 90%, (see Figure 8, Figure 9, Figure 10)

-55 550 729 890 µs

+25 500 625 750 µs

+125 550 681 780 µs

Post Radiation(+25)

500 640 750 µs

VSWI = 3.0V, CL = 1µF, RL = 1Ω, VSWO = 10% to 90%, (see Figure 8, Figure 9, Figure 10)

-55 400 542 670 µs

+25 380 487 590 µs

+125 450 554 635 µs

Post Radiation(+25)

380 497 590 µs

VSWO Turn-Off Time

tOFF VSWI = 5.5V, CL = 1µF, RL = 1.8Ω, Measure from VON = VON_IL to VSWO = 90% of VSWI (see Figure 8, Figure 9, Figure 10)

-55 to +125 - 3 5 µs

VSWI = 3.0V, CL = 1µF, RL = 1Ω, Measure from VON = VON_IL to VSWO = 90% of VSWI (see Figure 8, Figure 9, Figure 10)

-55 to +125 - 4 6 µs

VSWO Fall Time tFALL VSWI = 5.5V, CL = 1µF, RL = 1.8Ω, VSWO = 90% to 10%, (see Figure 8, Figure 9, Figure 10)

-55 to +125 4 7 12 µs

Post Radiation(+25)

4 6.5 9.5 µs

VSWI = 3.0V, CL = 1µF, RL = 1Ω, VSWO = 90% to 10%, (see Figure 8, Figure 9, Figure 10)

-55 to +125 3 5 9 µs

Post Radiation(+25)

3 4.5 6.5 µs

Typicals are at CSWI = 0.1µF and TA = +25°C; unless otherwise specified. Boldface limits apply across the operating temperature range, -55°C to +125°C; over a total ionizing dose of 100krad(Si) at +25°C with exposure at a high dose rate of 50 to 300rad(Si)/s (ISL70061SEH only); or over a total ionizing dose of 75krad(Si) at +25°C with exposure at a low dose rate of <10mrad(Si)/s.

Parameter Symbol Test ConditionsTemperature

(°C)Min

(Note 9)Typ

(Note 8)Max

(Note 9) Unit

Page 10: ISL70061SEH, ISL73061SEH Datasheet...(ISL70061SEH only); or over a total ionizing dose of 75krad(Si) at +25°C with exposure at a low dose rate of

ISL70061SEH, ISL73061SEH 2. Specifications

R34DS0004EU0102 Rev.1.02 Page 10 of 23Dec.11.19

2.5 Test Circuits and Waveforms

RCP Response Time

tREV VSWI = 5.5V, VON = 5.5V, VDON = 0V; Start with VSWO = VSWI = 5.5V; Sweep VSWO from 5.5V to 5.6V with 5000V/s slew rate; Measure time from VRCP_ENTER to when IRCP has returned to 0A.(Note 12)

-55 to +125 - 4 8 µs

Post Radiation(+25)

- 4 12 µs

VSWI = 3.0V, VON = 3.0V, VDON = 0V; Start with VSWO = VSWI = 3.0V; Sweep VSWO from 3.0V to 3.1V with 5000V/s slew rate; Measure time from VRCP_ENTER to when IRCP has returned to 0A. (Note 12)

-55 to +125 - 5 10 µs

Post Radiation(+25)

- 5 14 µs

Notes:8. Typical values shown are not guaranteed.

9. Parameters with Min and/or Max limits are 100% tested at -55°C, +25°C, and +125°C, unless otherwise specified.

10. rON resistance of the die only, excludes packaging and bond wire resistance.

11. RCP and timing parameters are not tested during wafer die probe testing. Die limit specifications for these parameters are not available. Packaging and bond wire parasitic impedance do affect the specification performance of these parameters.

12. IRCP is the current referenced from SWO to SWI when VSWO > VSWI but VRCP_ENTER has not been met.

Figure 8. Control Timing Waveform Figure 9. SWO Timing Waveform

Figure 10. Timing Test Circuit

Typicals are at CSWI = 0.1µF and TA = +25°C; unless otherwise specified. Boldface limits apply across the operating temperature range, -55°C to +125°C; over a total ionizing dose of 100krad(Si) at +25°C with exposure at a high dose rate of 50 to 300rad(Si)/s (ISL70061SEH only); or over a total ionizing dose of 75krad(Si) at +25°C with exposure at a low dose rate of <10mrad(Si)/s.

Parameter Symbol Test ConditionsTemperature

(°C)Min

(Note 9)Typ

(Note 8)Max

(Note 9) Unit

VON

VSWO

VON_IHVON_IL

tON

10%

90%

tOFF

VSWO

10%

90%

tRISE

90%

10%

tFALL

SWOSWI

GNDON

RL+-

CL

ISL70061SEH

DON

+-

VSWI

VDON

VSWO

VON

Page 11: ISL70061SEH, ISL73061SEH Datasheet...(ISL70061SEH only); or over a total ionizing dose of 75krad(Si) at +25°C with exposure at a low dose rate of

ISL70061SEH, ISL73061SEH 3. Typical Performance Curves

R34DS0004EU0102 Rev.1.02 Page 11 of 23Dec.11.19

3. Typical Performance CurvesUnless otherwise noted, VSWI = 5.5V; ISWO = 1A; CSWI = 10µF, CL = 1µF, TA = +25°C

Figure 11. rON vs VSWI vs Temperature Figure 12. rON vs VSWI vs Temperature

Figure 13. rON vs ISWO vs Temperature Figure 14. rON vs ISWO vs Temperature

Figure 15. ISWQ vs Temperature vs VSWI Figure 16. ISWI(OFF) vs Temperature vs VSWI

79

1113151719212325

2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

r ON

(mΩ

)

VSWI (V)

ISW = 1A

-55°C25°C125°C

79

111315171921232527

2.5 3.0 3.5 4.0 4.5 5.0 5.5

r ON

(mΩ

)

VSWI (V)

ISW = 3A

-55 °C25 °C125 °C

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10

r ON

(mΩ

)

ISWO (A)

-55°C25°C125°CVSWI = 5.5V

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10

r ON

(mΩ

)

ISWO (A)

-55°C25°C125°CVSWI = 3.0V

15

20

25

30

35

-55 -40 -25 -10 5 20 35 50 65 80 95 110 125

I SW

Q(μ

A)

Temperature (°C)

3.6V

5.5V

15

20

25

30

35

40

-55 -40 -25 -10 5 20 35 50 65 80 95 110 125

I SW

I(OFF

)(μA

)

Temperature (°C)

3.6V

5.5V

Page 12: ISL70061SEH, ISL73061SEH Datasheet...(ISL70061SEH only); or over a total ionizing dose of 75krad(Si) at +25°C with exposure at a low dose rate of

ISL70061SEH, ISL73061SEH 3. Typical Performance Curves

R34DS0004EU0102 Rev.1.02 Page 12 of 23Dec.11.19

Figure 17. SWI, SWO, ON, DON Breakdown Voltage Figure 18. UVLO Falling and Rising Voltage vs Temperature

Figure 19. ON and DON VIH and VIL vs Temperature Figure 20. rDIS vs VSWI vs Temperature

Figure 21. tRISE vs Temperature vs VSWI Figure 22. tFALL vs Temperature vs VSWI

Unless otherwise noted, VSWI = 5.5V; ISWO = 1A; CSWI = 10µF, CL = 1µF, TA = +25°C (Continued)

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7 8 9

Cur

rent

(mA)

Voltage (V)

-55°C

25°C

125°C

2.05

2.10

2.15

2.20

2.25

2.30

2.35

2.40

2.45

-55 -40 -25 -10 5 20 35 50 65 80 95 110 125

V SW

I(V

)

Temperature (°C)

UVLO Falling Voltage

UVLO Rising Voltage

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

-55 -40 -25 -10 5 20 35 50 65 80 95 110 125

Logi

c Vo

ltage

(V)

Temperature (°C)

VIH_ONVIL_ONVIH_DONVIL_DON

VSWI = 5.5V

0

50

100

150

200

250

3.0 3.5 4.0 4.5 5.0 5.5

r DIS

(Ω)

VSWI (V)

-58°C

25°C

128°C

200

300

400

500

600

700

800

-55 -40 -25 -10 5 20 35 50 65 80 95 110 125

t RIS

E(μ

s)

Temperature (°C)

tRise_3V

tRise_5.5V0

2

4

6

8

10

12

-55 -40 -25 -10 5 20 35 50 65 80 95 110 125

t FAL

L(μ

s)

Temperature (°C)

tFall_3V

tFall_5.5V

Page 13: ISL70061SEH, ISL73061SEH Datasheet...(ISL70061SEH only); or over a total ionizing dose of 75krad(Si) at +25°C with exposure at a low dose rate of

ISL70061SEH, ISL73061SEH 3. Typical Performance Curves

R34DS0004EU0102 Rev.1.02 Page 13 of 23Dec.11.19

Figure 23. tON vs Temperature vs VSWI Figure 24. tOFF vs Temperature vs VSWI

Figure 25. Turn-On Waveform Figure 26. Turn-Off Waveform

Figure 27. Turn-On Waveform Figure 28. Turn-Off Waveform

Unless otherwise noted, VSWI = 5.5V; ISWO = 1A; CSWI = 10µF, CL = 1µF, TA = +25°C (Continued)

70

75

80

85

90

95

100

105

-55 -40 -25 -10 5 20 35 50 65 80 95 110 125

t ON

(μs)

Temperature (°C)

tON_3V

tON_5.5V

2.5

3.0

3.5

4.0

4.5

5.0

-55 -40 -25 -10 5 20 35 50 65 80 95 110 125

t OFF

(μs)

Temperature (°C)

tOFF_3V

tOFF_5.5V

200µs/Div

1V/Div

1V/Div

tRISE: 504µs

ON

SWO

ISWO = 3A

VSWI = 3V

CL = 1µF

2.0µs/Div

1V/Div

tFALL: 3.72µs

ON

SWO

ISWO = 3A

VSWI = 3V

CL = 1µF

200µs/Div

1V/Div

1V/Div

tRISE: 663µs

ON

SWO

ISWO = 3A

VSWI = 5.5V

CL = 1µF

5.0µs/Div

1V/Div

tFALL: 10.2µs

ON

SWO

ISWO = 3A

VSWI = 5.5V

CL = 1µF

Page 14: ISL70061SEH, ISL73061SEH Datasheet...(ISL70061SEH only); or over a total ionizing dose of 75krad(Si) at +25°C with exposure at a low dose rate of

ISL70061SEH, ISL73061SEH 3. Typical Performance Curves

R34DS0004EU0102 Rev.1.02 Page 14 of 23Dec.11.19

Figure 29. IRCP Enter vs VSWO vs Temperature Figure 30. IRCP Enter vs VSWO vs Temperature

Figure 31. IRCP Exit vs VSWO vs Temperature Figure 32. IRCP Exit vs VSWO vs Temperature

Figure 33. VRCP_ENTER and VRCP_EXIT vs Temperature vs VSWI

Figure 34. RCP Response vs Temperature vs VSWI

Unless otherwise noted, VSWI = 5.5V; ISWO = 1A; CSWI = 10µF, CL = 1µF, TA = +25°C (Continued)

0.00

0.05

0.10

0.15

0.20

0.25

0123456789

10

5.50 5.55 5.60 5.65 5.70

V DIF

F=

V SW

O-V

SWI

I RC

P(A

)

VSWO (V)

-58°C25°C128°CVdiff

VSWI = 5.5V

0.00

0.05

0.10

0.15

0.20

0.25

0.00.51.01.52.02.53.03.54.04.55.0

3.30 3.35 3.40 3.45 3.50

V DIF

F=

V SW

O-V

SWI

I RC

P(A

)

VSWO (V)

-58°C25°C128°C Vdiff

VSWI = 3.3V

-0.10-0.050.000.050.100.150.200.250.300.350.400.45

-1.6-1.4-1.2-1.0-0.8-0.6-0.4-0.20.00.2

5.4 5.5 5.6 5.7 5.8 5.9

V DIF

F=

V SW

O-V

SWI(

V)

I RC

P(A

)

VSWO (V)

-58°C

25°C

128°C

VdiffVSWI = 5.5V-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

2.9 3.1 3.3 3.5

V DIF

F=

V SW

O-V

SWI

I RC

P(A

)

VSWO (V)

-58°C25°C128°CVdiffVSWI = 3.3V

-60

-40

-20

0

20

40

60

80

100

-55 -40 -25 -10 5 20 35 50 65 80 95 110 125

Thre

shol

d Vo

ltage

(mV)

Temperature (°C)

5.5V Enter3.0V Enter5.5V Exit3.0V Exit

0

1

2

3

4

5

6

-55 -40 -25 -10 5 20 35 50 65 80 95 110 125

t REV

(μs)

Temperature (°C)

5.5V

3.0V

Page 15: ISL70061SEH, ISL73061SEH Datasheet...(ISL70061SEH only); or over a total ionizing dose of 75krad(Si) at +25°C with exposure at a low dose rate of

ISL70061SEH, ISL73061SEH 4. Applications Information

R34DS0004EU0102 Rev.1.02 Page 15 of 23Dec.11.19

4. Applications Information

4.1 Functional DescriptionThe ISL7x061SEH are single channel, low voltage, high current load switches for use in space power switching applications. The integrated circuit is a PMOS pass device with a simple logic input to turn the pass device on or off.

The ISL7x061SEH devices are capable of 10A continuous current with a typical rON of 14mΩ with SWI = 5.5V and 16mΩ with SWI = 3.0V. The input voltage (VSWI) range of the devices is 3V to 5.5V and an internal UVLO keeps the devices in an OFF state when the VSWI is too low. To reduce voltage drops and minimize inrush current, the devices feature internal controlled on-time with a typical fixed rise time of 625µs at SWI = 5.5V. The ISL7x061SEH incorporate reverse current protection when the output voltage (VSWO) increases above the VSWI voltage. Additionally, there is a selectable 122Ω MOSFET between SWO and GND to discharge the output when the main pass device is OFF. When the DON logic input = High, the discharge FET circuitry is enabled.

4.2 rON of the Die vs Packaged PartBond wire resistance, package parasitic resistance, and package lead lengths are significant contributors to the switch rON resistance. The rON resistance of the die at 5.5V and 1A load is 7mΩ. At 5.5V and1A load the rON difference between a packaged part and the die is 6.8mΩ (13.8mΩ - 7mΩ). Based on this data, the package adds approximately 50% to the switch’s rON. Customers purchasing die and using their own packages must take into consideration the packaging resistance to ensure the rON meets their application requirements.

4.3 Undervoltage Lockout (UVLO)The devices have Undervoltage Lockout (UVLO) protection. The UVLO on the ISL7x0061SEH devices is based on the SWI voltage level. When there is not enough voltage to meet the UVLO threshold, the PMOS pass device is kept off. This occurs when the SWI voltage drops below UVLOFALLING threshold. When the ON pin is in the high state and the input voltage rises above the UVLORISING threshold, a controlled turn-on of the PMOS pass device is initiated.

4.4 ON Logic InputThe ON logic input controls the state of the PMOS pass device. The ON logic input is active high. When ON = High, the switch is ON and when ON = Low, the switch is OFF. The low logic levels make the ISL7x0061SEH ideal for interfacing with general purpose I/O voltages from CPU, FPGA, and microprocessors. The ON logic input has hysteresis to remove any switch bouncing or ON/OFF oscillations due to noise on the control signal. The pin has an internal 2MΩ pull-down resistor to ground and can be left floating.

4.5 DON Logic InputThe ISL7x061SEH devices have a selectable discharge MOSFET circuit at the SWO output that can be enabled when DON = High. It is disabled when DON = Low.

When DON = High and the PMOS pass device gets turned off (ON = Low), a 122Ω discharge MOSFET gets connected from the SWO output to ground. When the PMOS pass device is turned on (ON = High), the 122Ω discharge MOSFET gets disconnected. This functionality is for applications that need to quickly discharge the output when the PMOS pass device is turned off.

When DON = Low, the discharge MOSFET circuitry is disabled and does not get connected at the output when the PMOS pass device gets turned off. The DON pin has an internal 2MΩ pull-down resistor to ground and it can be left floating if this discharge function is not required.

The low logic levels of DON make it ideal for interfacing with general purpose I/O voltages from CPU, FPGA, and microprocessors. The DON logic input has hysteresis to remove any switch bouncing or ON/OFF oscillations due to noise on the control signal.

If DON = High and part is in the reverse current protection (RCP) state (VSWO ≥ VRCP_ENTER), the discharge FET circuitry becomes inactive and the 122Ω discharge MOSFET does not get connected at the output. When the RCP event is removed and the part resumes normal operation, the discharge circuitry is restored to normal operation.

Page 16: ISL70061SEH, ISL73061SEH Datasheet...(ISL70061SEH only); or over a total ionizing dose of 75krad(Si) at +25°C with exposure at a low dose rate of

ISL70061SEH, ISL73061SEH 4. Applications Information

R34DS0004EU0102 Rev.1.02 Page 16 of 23Dec.11.19

4.6 Controlled Rise TimeThe ISL7x061SEH devices have a fixed rise time (tRISE). With SWI at 5.5V, the typical tRISE is 625µs. This equates to a typical slew rate of 8.8V/ms. Figure 35 shows a scope plot of the tON/tRISE waveform of the load switch with SWI at 5.5V. The controlled rise time of the SWO voltage reduces the amount of inrush current when charging the load capacitance.

Use Equation 1 to calculate the inrush current.

where

• IINRUSH = inrush current (A)

• CL = load capacitance (F)

• SR = slew rate (V/s)

4.7 Reverse Current Protection (RCP)RCP circuitry is embedded to eliminate leakages from SWO to SWI in case of VSWO > VSWI. A comparator measures the dropout voltage on the switch between SWO and SWI and turns off the PMOS pass device if this voltage exceeds the VRCP_ENTER threshold. If the DON logic input = High or Low, the discharge MOSFET circuit is disabled in the reverse current state.

4.7.1 Reverse Current when PMOS Pass Device is DisabledThe load switch has been designed to have minimal reverse current when the PMOS pass device is turned OFF (disabled). The PMOS pass device is OFF under the following conditions:

• ON = Low

• VSWI < UVLOFALLING

• VSWO - VSWI > VRCP_ENTER

Figure 36 on page 17 shows the scope plot of SWO current as the SWO voltage is swept from 0V to 5.5V with VSWI = 3V and ON = DON = 0V. As you can see from the plot in the RCP voltage range of 3.04V to 5.5V, IRCP_LEAK is 5µA to 8µA.

Figure 35. tON/tRISE Waveform

IINRUSH CL SR=(EQ. 1)

200µs/Div

1V/Div

1V/Div

tRISE: 663µs

ON

SWO

tON: 84µs

ISWO = 3A

VSWI = 5.5V

CL = 1µF

Page 17: ISL70061SEH, ISL73061SEH Datasheet...(ISL70061SEH only); or over a total ionizing dose of 75krad(Si) at +25°C with exposure at a low dose rate of

ISL70061SEH, ISL73061SEH 4. Applications Information

R34DS0004EU0102 Rev.1.02 Page 17 of 23Dec.11.19

4.7.2 Reverse Current when PMOS Pass Device is EnabledFigure 37 (VSWI = 5.5V) and Figure 38 (VSWI = 3.3V) show the reverse current (IRCP) response when the PMOS pass device is ON (enabled) and the SWO voltage is increased above the SWI voltage (entering into RCP).

Note: The green, orange, and yellow traces in the graphs are the IRCP vs VSWO vs Temperature plots. The blue trace in the graphs show the voltage differential across the PMOS pass device (its Y axis scale is on the right side of the graphs).

As can be seen from the plots in the graphs, before VDIFF = VRCP_ENTER to turn the switch OFF, amps of current will flow from the SWO to SWI. At -58°C with VSWI = 5.5V, the current approaches 9A. This is expected because rON is lowest at cold temperature and VSWI = 5.5V. In addition, VRCP_ENTER is higher when VSWI = 5.5V. Looking at the graphs the VRCP_ENTER at VSWI = 5.5V is approximately 100mV.

IRCP can be calculated using Equation 2. IRCP is equal to the differential voltage across the switch (VDIFF) divided by the rON of the switch. VDIFF = VSWO - VSWI.

where

• IRCP = current referenced from SWO to SWI when VSWO > VSWI but VRCP_ENTER has not been met (A)

• VDIFF = differential voltage across the switch (V)

• rON = switch on resistance (Ω)

4.8 Turn-Off Inductive Voltage Transient When the PMOS pass device turns OFF during normal operation, inductive kickback generates a momentary voltage spike at the SWI input. A decoupling capacitor at the SWI pin can reduce the level of this voltage transient.

Figure 36. Leakage Current vs VSWO in the Disabled State

Figure 37. IRCP Enter vs VSWO vs Temperature Figure 38. IRCP Enter vs VSWO vs Temperature

-2-1012345678

0 1 2 3 4 5

I LEA

KAG

E(μ

A)

VSWO (V)

0.00

0.05

0.10

0.15

0.20

0.25

0123456789

10

5.50 5.55 5.60 5.65 5.70

V DIF

F=

V SW

O-V

SWI

I RC

P(A

)

VSWO (V)

-58°C25°C128°CVdiff

VSWI = 5.5V

0.00

0.05

0.10

0.15

0.20

0.25

0.00.51.01.52.02.53.03.54.04.55.0

3.30 3.35 3.40 3.45 3.50

V DIF

F=

V SW

O-V

SWI

I RC

P(A

)

VSWO (V)

-58°C25°C128°C Vdiff

VSWI = 3.3V

IRCP VDIFF rON =(EQ. 2)

Page 18: ISL70061SEH, ISL73061SEH Datasheet...(ISL70061SEH only); or over a total ionizing dose of 75krad(Si) at +25°C with exposure at a low dose rate of

ISL70061SEH, ISL73061SEH 4. Applications Information

R34DS0004EU0102 Rev.1.02 Page 18 of 23Dec.11.19

To prevent internal damage, the voltage transient must be less than the absolute maximum voltage rating of 6.5V. The transient can be limited to a safe level by designing the SWI board trace to have minimal loop inductance along with using the appropriate decoupling capacitance. Place the required decoupling capacitor/capacitors as close to the SWI pin as possible.

Use Equation 3 to calculate the decoupling capacitance required based on the trace loop inductance, load current, SWI supply voltage, and the maximum allowable SWI transient voltage spike.

where:

• C = decoupling capacitance on SWI to limit the maximum voltage spike (F)

• L = total loop inductance on the SWI side of the switch (H)

• I = load current (A)

• VSWI = SWI supply voltage (V)

• VSPIKE = maximum transient voltage spike on SWI (V)

Equation 3 example: System parameters: L = 0.14µH, VSWI = 5.5V, and I = 10A. To limit the VSPIKE to < 6.5V would require decoupling capacitance of >14µF. To limit the VSPIKE to 6V would require a decoupling capacitance of 56µF. If the system load current is I = 3A, it only requires a decoupling capacitance of 5µF to limit the VSPIKE to 6V.

Note: The previous discussion also applies to the SWO side of the PMOS pass device when turning OFF during a RCP event. This occurs during the transition when VSWO - VSWI > VRCP_ENTER. A transient voltage spike can be generated at the SWO and SWI pins.

4.9 Power Supply RecommendationsThe ISL7x0061SEH devices are designed to operate across an input voltage range of 3.0V to 5.5V. For proper electrical performance, the supply rail should be regulated and proper decoupling capacitors placed from the SWI trace to ground.

4.10 Layout

4.10.1 Layout GuidelinesFor best performance, make the SWI and SWO traces as short and wide as possible and place a solid ground power plane ≤5 mils under the traces to minimize the trace parasitic inductance. Place the decoupling capacitors as close as possible to the SWI and SWO pins to minimize the effects that the parasitic trace inductances may have on normal operation. See “Turn-Off Inductive Voltage Transient” on page 17. Due to the possibility of large power dissipation, connect the device thermal pad to the PCB through thermal vias to effectively remove heat from the part.

4.10.2 Layout Example

Figure 39. Layout Recommendations

(EQ. 3) C 2 0.5 L I2 VSPIKE VSWI– 2=

14

13

12

11

10

2

3

4

5

1SWI

SWI

SWI

SWI

ON

SWO

SWO

SWO

SWO

GND

SWI

SWI 6

7

SWO

DON9

8

DON

Thermal Vias

Place as closeto the device apossible

Page 19: ISL70061SEH, ISL73061SEH Datasheet...(ISL70061SEH only); or over a total ionizing dose of 75krad(Si) at +25°C with exposure at a low dose rate of

ISL70061SEH, ISL73061SEH 4. Applications Information

R34DS0004EU0102 Rev.1.02 Page 19 of 23Dec.11.19

4.11 Die and Assembly Characteristics

4.12 Metallization Mask Layout

Table 2. Die and Assembly Related Information

Die Information

Dimensions 2413µm x 5969µm (95 mils x 235 mils)Thickness: 483µm ±25µm (19 mils ±1 mil)

Interface Materials

Glassivation Type: 12kÅ Silicon Nitride on 3kÅ Oxide

Top Metallization Type: 300Å TIN on 2.8um AlCu (99.5%/0.5%)In Bondpads, TIN has been removed.

Backside Finish Silicon

Process P6

Assembly Information

Substrate Potential GND

Additional Information

Worst Case Current Density 1.6 x 105A/cm2

Transistor Count 846

Weight of Packaged Device 0.6 grams (typical) - K14.C package

Lid Characteristics Finish: GoldLid Potential: Grounded, tied to package pin 8

SWI

SWI

SWI

SWI

SWI

SWI

SWI

SWI

SWI

SWI

SWI

SWI

SWI

SWI

SWI

SWI

SWI

SWI

SWO

SWO

SWO

SWO

SWO

SWO

SWO

SWO

SWO

SWO

SWO

SWO

SWO

SWO

SWO

SWO

SWO

ON GND

DON

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

Page 20: ISL70061SEH, ISL73061SEH Datasheet...(ISL70061SEH only); or over a total ionizing dose of 75krad(Si) at +25°C with exposure at a low dose rate of

ISL70061SEH, ISL73061SEH 4. Applications Information

R34DS0004EU0102 Rev.1.02 Page 20 of 23Dec.11.19

Table 3. Layout X-Y Coordinates (Centroid of bond pad)

Pad Name Pad Number X (µm) Y (µm) Pad Name Pad Number X (µm) Y (µm)

SWI 1 -636.8 2679.6 SWO 38 636.8 2701.05

SWI 2 -636.8 2379.6 SWO 37 636.8 2401.05

SWI 3 -636.8 2079.6 SWO 36 636.8 2101.05

SWI 4 -636.8 1779.6 SWO 35 636.8 1801.05

SWI 5 -636.8 1479.6 SWO 34 636.8 1501.05

SWI 6 -636.8 1179.6 SWO 33 636.8 1201.05

SWI 7 -636.8 879.6 SWO 32 636.8 901.05

SWI 8 -636.8 579.6 SWO 31 636.8 601.05

SWI 9 -636.8 279.6 SWO 30 636.8 301.05

SWI 10 -636.8 -20.4 SWO 29 636.8 1.05

SWI 11 -636.8 -320.4 SWO 28 636.8 -298.95

SWI 12 -636.8 -620.4 SWO 27 636.8 -598.95

SWI 13 -636.8 -920.4 SWO 26 636.8 -898.95

SWI 14 -636.8 -1220.4 SWO 25 636.8 -1198.95

SWI 15 -636.8 -1520.4 SWO 24 636.8 -1498.95

SWI 16 -636.8 -1820.4 SWO 23 636.8 -1798.95

SWI 17 -636.8 -2120.4 SWO 22 636.8 -2098.95

SWI 18 -636.8 -2420.4 DON 21 636.8 -2398.95

ON 19 -636.8 -2720.4 GND 20 636.8 -2698.95

Notes:13. Origin of coordinates is the center of the die.

14. Pad size for all pads: 185µm x 185µm.

15. Bond wire size: 0.002”.

Page 21: ISL70061SEH, ISL73061SEH Datasheet...(ISL70061SEH only); or over a total ionizing dose of 75krad(Si) at +25°C with exposure at a low dose rate of

ISL70061SEH, ISL73061SEH 5. Revision History

R34DS0004EU0102 Rev.1.02 Page 21 of 23Dec.11.19

5. Revision History

Rev. Date Description

1.02 Dec.11.19 Updated the Features section on page 1 by changing the SEE hardness to No SEB/SEL LETH, SWI, SWO, ON, DON = 6.7V: 86MeV•cm2/mg.Updated absolute maximum rating for ISWPfrom 45A to 20A and changed pulse from ≤5µs to ≤1ms.Added Note 3.Updated test conditions for rDIS and tREV.

1.01 Oct.28.19 Updated the Ordering Information table on page 5 by changing the die temperature to read +25. Changed Table 1 on page 5 to “Key Features Between Family of Parts”. Updated the “RCP Enter Threshold Voltage” parameter by removing the Post Radiation (+25) row for VSWI = 5.5V.

1.00 Jul.25.19 Initial Release.

Page 22: ISL70061SEH, ISL73061SEH Datasheet...(ISL70061SEH only); or over a total ionizing dose of 75krad(Si) at +25°C with exposure at a low dose rate of

ISL70061SEH, ISL73061SEH 6. Package Outline Drawing

R34DS0004EU0102 Rev.1.02 Page 22 of 23Dec.11.19

6. Package Outline DrawingK14.C14 LEAD CERAMIC METAL SEAL FLATPACK PACKAGE Rev 0, 9/12

SIDE VIEW

TOP VIEW

SECTION A-A

-D-

-C-

SEATING AND

BASE PLANE

-H-

BASEMETAL

PIN NO. 1ID AREA

0.022 (0.56)

0.015 (0.38)

0.050 (1.27 BSC)

0.005 (0.13)MIN

0.115 (2.92)

0.085 (2.16) 0.045 (1.14)

0.026 (0.66) 0.260 (6.60)

0.248 (6.30)

0.009 (0.23)

0.004 (0.10)

0.370 (9.40)

0.270 (6.86)

0.03 (0.76) MIN

0.006 (0.15)

0.004 (0.10)

0.009 (0.23)

0.004 (0.10)

0.019 (0.48)0.015 (0.38)

0.0015 (0.04)MAX

0.022 (0.56)

0.015 (0.38)

3

5

2

LEAD FINISH

1.adjacent to pin one and shall be located within the shaded area shown. The manufacturer’s identification shall not be used as a pin one identification mark.

2. The maximum limits of lead dimensions (section A-A) shall be measured at the centroid of the finished lead surfaces, when solder dip or tin plate lead finish is applied.

3.

4.shall be molded to the bottom of the package to cover the leads.

5.meniscus) of the lead from the body. Dimension minimum shall be reduced by 0.0015 inch (0.038mm) maximum when solder diplead finish is applied.

7.

8.

NOTES:

Dimensioning and tolerancing per ANSI Y14.5M - 1982.

Dimensions: INCH (mm). Controlling dimension: INCH.

Index area: A notch or a pin one identification mark shall be located

Measure dimension at all four corners.

For bottom-brazed lead packages, no organic or polymeric materials

Dimension shall be measured at the point of exit (beyond the

0.390 (9.91)

0.376 (9.55)

0.183 (4.65)

0.167 (4.24)

6

BOTTOM

METAL

6. The bottom of the package is a solderable metal surface.

BOTTOM VIEW

OPTIONAL

PIN 1 INDEX

BOTTOM METAL0.005 (0.127) REF.

OFFSET FROM CERAMIC EDGE

A

A

1

For the most recent package outline drawing, see K14.C.

Page 23: ISL70061SEH, ISL73061SEH Datasheet...(ISL70061SEH only); or over a total ionizing dose of 75krad(Si) at +25°C with exposure at a low dose rate of

Corporate HeadquartersTOYOSU FORESIA, 3-2-24 Toyosu,Koto-ku, Tokyo 135-0061, Japanwww.renesas.com

Contact InformationFor further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:www.renesas.com/contact/

TrademarksRenesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Rev.1.0 Mar 2020)

© 2020 Renesas Electronics Corporation. All rights reserved.


Recommended