+ All Categories
Home > Documents > Modeling Combinatorially Complex Ribonucleotide Reductase

Modeling Combinatorially Complex Ribonucleotide Reductase

Date post: 31-Jan-2016
Category:
Upload: archer
View: 37 times
Download: 0 times
Share this document with a friend
Description:
Modeling Combinatorially Complex Ribonucleotide Reductase. Tom Radivoyevitch Assistant Professor Epidemiology and Biostatistics Case Western Reserve University Email: [email protected] Website: http://epbi-radivot.cwru.edu/. Overview. Model enzymes as quasi-equilibria (e.g. E ES) - PowerPoint PPT Presentation
31
Modeling Combinatorially Modeling Combinatorially Complex Ribonucleotide Complex Ribonucleotide Reductase Reductase Tom Radivoyevitch Assistant Professor Epidemiology and Biostatistics Case Western Reserve University Email: [email protected] Website: http://epbi-radivot.cwru.edu/
Transcript
Page 1: Modeling Combinatorially Complex Ribonucleotide Reductase

Modeling Combinatorially Modeling Combinatorially Complex Ribonucleotide Complex Ribonucleotide

ReductaseReductase

Tom RadivoyevitchAssistant ProfessorEpidemiology and BiostatisticsCase Western Reserve University

Email: [email protected]: http://epbi-radivot.cwru.edu/

Page 2: Modeling Combinatorially Complex Ribonucleotide Reductase

OverviewOverview

• Model enzymes as quasi-equilibria (e.g. E ES) Model enzymes as quasi-equilibria (e.g. E ES) • Combinatorially Complex Equilibria:Combinatorially Complex Equilibria:

few reactants => many possible complexesfew reactants => many possible complexes• R package: Combinatorially Complex Equilibrium Model R package: Combinatorially Complex Equilibrium Model

Selection (ccems) implements methods for activity and Selection (ccems) implements methods for activity and mass datamass data

• Hypotheses: complete K = ∞ Hypotheses: complete K = ∞ [Complex] = 0 vs binary [Complex] = 0 vs binary KK1 1 = K= K22

• Generate a set of possible models, fit them, and select Generate a set of possible models, fit them, and select the best the best

• Model Selection: Akaike Information Criterion (AIC)Model Selection: Akaike Information Criterion (AIC)• AIC decreases with P and then increasesAIC decreases with P and then increases• Billions of models, but only thousands near AIC upturnBillions of models, but only thousands near AIC upturn• Generate 1P, 2P, 3P model space chunks sequentiallyGenerate 1P, 2P, 3P model space chunks sequentially• Use structures to constrain complexity and simplicity of Use structures to constrain complexity and simplicity of

modelsmodels

Page 3: Modeling Combinatorially Complex Ribonucleotide Reductase

Ultimate GoalUltimate Goal

EXPERIMENTALBIOLOGY

COMPUTERMODELING

CONTROLTHEORY

models

control lawsdata

hypotheses

proposed clinical trial

validated process model development

control system design methods development

Present Future

• Safer flying airplanes with autopilotsSafer flying airplanes with autopilots• Ultimate Goal: individualized, state feedback based Ultimate Goal: individualized, state feedback based

clinical trialsclinical trials

• Better understanding => better controlBetter understanding => better control• Conceptual models help trial designs today Conceptual models help trial designs today • Computer models of airplanes help train pilots and Computer models of airplanes help train pilots and

autopilotsautopilots

Radivoyevitch et al. (2006) BMC Cancer 6:104

Page 4: Modeling Combinatorially Complex Ribonucleotide Reductase

dNTP Supply System

Figure 1. dNTP supply. Many anticancer agents act on or through this system to kill cells. The most central enzyme of this system is RNR.

UDP

CDP

GDP

ADP

dTTP

dCTP

dGTP

dATP

dT

dC

dG

dA

DNA

dUMP

dU

TS

DCTD

dCK

DN

A p

olym

eras

eTK1

cytosol

mitochondria

dT

dC

dG

dA

TK

2dG

K

dTMP

dCMP

dGMP

dAMP

dTTP

dCTP

dGTP

dATP

5NT

NT2

cytosol

nucleus

dUDP

dUTPdUTPase

dN

dN

dCK

flux activation inhibition

ATPordATP

RN

R

dCK

Page 5: Modeling Combinatorially Complex Ribonucleotide Reductase

R1

R2 R2

R1 R1

R1 R1

R1 R1

R1

R1

R1

R1

R1 R1

R1

R1

R1

R1

R2 R2

UDP, CDP, GDP, ADP bind to catalytic site

ATP, dATP, dTTP, dGTP bind to selectivity site

dATP inhibits at activity site, ATP activates at activity site?

5 catalytic site states x 5 s-site states x 3 a-site states x 2 h-site states = 150 states

(150)6 different hexamer complexes => 2^(150)6 models 2^(150)6 = ~1 followed by a trillion zeros1 trillion complexes => 1 trillion (1 followed by only 12 zeros) 1-parameter models

ATP activates at hexamerization site??

Ribonucleotide Reductase (RNR)Ribonucleotide Reductase (RNR)

R2 R2

RNR is Combinatorially Complex

Page 6: Modeling Combinatorially Complex Ribonucleotide Reductase

Michaelis-Menten ModelMichaelis-Menten Model

RNR: no NDP and no R2 dimer => kcat of complex is zero,else different R1-R2-NDP complexes can have different kcat values.

E + S ES

mm

m

m

mT

Tmm

mT

T

TT

TT

KS

SV

KS

KSV

KS

KSkE

kEKSKS

KSkEv

EESEES

EESkE

kEEES

E

EES

ESkE

EPEESPEk

EESkv

][

][

1/][

/][

1/][

/][][

][1/][

10

1/][

/][][

1]/[][

10

1]/[][

]/[][][

][][][

][0

][][

][][

)(][0)(][

][0][

maxmax1

1

1

1

1

1

mm K

S

E

ES

ES

ESK

][

][

][

][

]][[but so

Key perspective

Page 7: Modeling Combinatorially Complex Ribonucleotide Reductase

0.005 0.010 0.020 0.050 0.100 0.200 0.500

02

04

06

08

01

00

Total [r] (uM)

Pe

rce

nt A

ctiv

ity

solid line = Eqs. (1-2) dotted = Eq. (3)

Data from Scott, C. P., Kashlan, O. B., Lear, J. D., and Cooperman, B. S. (2001) Biochemistry 40(6), 1651-166

Model Parameter Initial Value Optimal Value Confidence Interval

RRGGttr1.1.0 RRGGtt_r 0.020 0.012 (0.007, 0.024)

SSE 1070.252 823.793

AIC 45.006 42.650

MM Kd 0.020 0.033 (0.022, 0.049)

SSE 2016.335 1143.682

AIC 50.706 45.603

R=R1 r=R22

G=GDP t=dTTP

)2(]][[

][][0

)1(]][[

][][0

_

_

SET

SET

K

SESS

K

SEEE

SE

T

SE

T

T

SE

SET

SE

TSE

T

KS

KS

EESversus

KS

KS

EES

KS

EEK

SEE

_

_

_

_

_

_ ][1

][

][][][

1

][

][][][

1

1][][

][1][][

Substitute this in here to get a quadratic in [S] whose solution is

Bigger systems of higher polynomials cannot be solved algebraically => use ODEs (above)

][4][][(][][(5.][][ _2

__ TSETTSETTSET SKESKESKSES

0)0]([,0)0]([

]][[][][

][

]][[][][

][

_

_

SE

K

SESS

d

Sd

K

SEEE

d

Ed

SET

SET

Michaelis-Menten ModelMichaelis-Menten Model [S] vs. [S[S] vs. [STT] ]

(3)

Page 8: Modeling Combinatorially Complex Ribonucleotide Reductase

E ES

EI ESI

E ES

EI ESI

SEIIEIET

SEIIESET

SEIIEIESET

KK

SIE

K

IEII

KK

SIE

K

SESS

KK

SIE

K

IE

K

SEEE

___

___

____

]][][[]][[][][0

]][][[]][[][][0

]][][[]][[]][[][][0

E ES

EI

EIT

EST

EIEST

K

IEII

K

SESS

K

IE

K

SEEE

]][[][][0

]][[][][0

]][[]][[][][0

ESIEIT

ESIEST

ESIEIEST

K

ISE

K

IEII

K

ISE

K

SESS

K

ISE

K

IE

K

SEEE

]][][[]][[][][0

]][][[]][[][][0

]][][[]][[]][[][][0

E ES

EI ESI

E

EI ESI

E ES

ESI

E

EI ESI

E ES

ESI

=

=E

EI

E

ESI

E ES E

Competitive inhibition

uncompetitive inhibition if kcat_ESI=0

E | ES

EI | ESI

noncompetitive inhibition Example of K=K’ Model

==

Enzyme, Substrate and InhibitorEnzyme, Substrate and Inhibitor

Page 9: Modeling Combinatorially Complex Ribonucleotide Reductase

Total number of spur graph models is 16+4=20 Radivoyevitch, (2008) BMC Systems Biology 2:15

Rt Spur Graph ModelsRt Spur Graph Models

RRttRRtRt

T

RRttRRtRRRtT

K

tR

K

tR

K

tRtt=

K

tR

K

tR

K

R

K

tRRRp=

222

2222

20

2220

.0)0(;0)0(

2

222

222

2222

tR

K

tR

K

tR

K

tRtt=

d

td

K

tR

K

tR

K

R

K

tRRRp=

d

Rd

RRttRRtRtT

RRttRRtRRRtT

R RR

RRtt

RRt Rt

R

RRtt

RRt Rt

R RR

RRtt

Rt

R RR

RRt Rt

R RR

RRtt

RRt

R

RRtt

Rt

R

RRt Rt

R RR

Rt

IJJJJJIJ JJJI JIJJ

IJIJ IJJI JJII

JJJJ

R

RRtt

RRt

R RR

RRtt

R RR

RRt

R

Rt

R

RRtt

R

RRt

JIIJIIJJ JIJI

R RR R

IJII IIIJ IIJI JIII IIII

R

Rt

R

RRtt

R

RRt

R RR

I0II III0 II0I 0III

R = R1 t = dTTP

for dTTP induced R1 dimerization

(RR, Rt, RRt, RRtt)

Page 10: Modeling Combinatorially Complex Ribonucleotide Reductase

R Rt t

RRt t

Rt R t

RRt t

Rt Rt RRtt

Kd_R_R

Kd_Rt_R

Kd_Rt_Rt

Kd_R_t

Kd_R_tKd_RRt_t

Kd_RR_t=

=

=

=

|

|

|

Rt Grid Graph ModelsRt Grid Graph Models

R Rt t

RRt t

Rt R t

RRt t

RRtt

KR_R

KR_t

KRRt_t

KRR_t=

=

=

=

=

===

=

=

=

=

=

===

=

=

=

R Rt t

RRt t

Rt R t

RRt t

Rt Rt RRtt

KR_R

KRt_R

KRt_Rt

KR_t

KR_t

|

|

|

|

|

|

| |

|

|

|

|

| |

|

?

?

HIFF

HDFFHDDD

=

Page 11: Modeling Combinatorially Complex Ribonucleotide Reductase

][

][2][2][22

][

)1]([][)(

)(

11TT

T

R

RRttRRtRRM

R

pRRMyE

yEy

AICc = N*log(SSE/N)+2P+2P(P+1)/(N-P-1)

Scott, C. P., Kashlan, O. B., Lear, J. D., and Cooperman, B. S. (2001) Biochemistry 40(6), 1651-166

Radivoyevitch, (2008) BMC Systems Biology 2:15

Application to DataApplication to Data

HDFF

=

=

R

RRtt

IIIJ

5 10 15

10

01

20

14

01

60

18

0

Total [dTTP] (uM)

Ave

rag

e M

ass

(kD

a)

III0mIIIJHDFF

III0m

Model Parameter Initial Value

Optimal Value

Confidence Interval

1 III0m m1 90.000 82.368 (79.838, 84.775)

  SSE 4397.550 525.178

  AIC 71.965 57.090

2 IIIJ R2t2 1.000^3 2.725^3 (2.014^3, 3.682^3)

  SSE 2290.516 557.797

  AIC 67.399 57.512

27 HDFF R2t0 1.000 12369.79 (0, 1308627507869)

  R1t0_t 1.000 1.744 (0.003, 1187.969)

  R2t0_t 1.000 0.010 (0.000, 403.429)

  SSE 25768.23 477.484

  AIC 105.342 77.423

RRttRRtRt

T

RRttRRtRRRtT

K

tR

K

tR

K

tRtt=

K

tR

K

tR

K

R

K

tRRRp=

222

2222

20

2220

.0)0(;0)0(

2

222

222

2222

tR

K

tR

K

tR

K

tRtt=

d

td

K

tR

K

tR

K

R

K

tRRRp=

d

Rd

RRttRRtRtT

RRttRRtRRRtT

jitR

ji

K

tR=tR

ji

Page 12: Modeling Combinatorially Complex Ribonucleotide Reductase

2+5+9+13 = 28 parameters => 228=2.5x108 spur graph models via Kj=∞ hypotheses

28 models with 1 parameter, 428 models with 2, 3278 models with 3, 20475 with 4

R = R1X = ATP

18

6

612

4

46

2

22

1

18

6

612

4

46

2

22

1

642

642

0

6420

i XR

i

i XR

i

i XR

i

i RX

i

T

i XR

i

i XR

i

i XR

i

i RX

i

T

iiii

iiii

K

XRi

K

XRi

K

XRi

K

XRiXX=

K

XR

K

XR

K

XR

K

XRRR=

Yeast R1 structure. Dealwis Lab, PNAS 102, 4022-4027, 2006

ATP-induced R1 Hexamerization

Kashlan et al. Biochemistry 2002 41:462

Page 13: Modeling Combinatorially Complex Ribonucleotide Reductase

==

==

==

= ==

==

==

= ==

==

==

==

==

==

==

----

==

==

==

==

==

==

==

==

==

= ==

==

----

------

--

==

==

==

----

------

--

X ==

==

----

------

--

==

==

==

----

------

--

X

==

==

==

==

==

XX

==

==

==

==

==

XX

X

==

==

----

------

--

XX

X

==

==

==

==

==

XX

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

----

------

--

XX

X

X ==

==

----

------

--

X==

==

----

------

--

==

==

==

==

==

X ----

------

--

X

==

==

----

------

--

----

------

--

X ----

------

--

X

----

------

--

X ==

==

X==

==

==

==

XX

X XX

X

Page 14: Modeling Combinatorially Complex Ribonucleotide Reductase

28 of top 30 did not include an h-site term; 28/30 ≠ 503/2081 with p < 10-16

This suggests no h-site. Top 13 all include R6X8 or R6X9, save one, single edge model R6X7 This suggests less than 3 a-sites are occupied in hexamer.

For details, see Radivoyevitch, T. Automated mass action model space generation and analysis methods for two-reactant combinatorially complex equilibriums: An analysis of ATP-induced ribonucleotide reductase R1 hexamerization data, Biology Direct 4, 50 (2009).

2088 Models with SSE < 2 min (SSE)

142 144 146 148 150 152 154

0.00

0.05

0.10

0.15

0.20

0.25

AIC

dens

ity

no h site (508)h site (1580)

A

142 144 146 148 150

0.05

0.15

0.25

AIC

dens

ity

no h site (77)h site (78)

B

146 148 150 152 154

0.00

0.05

0.10

0.15

0.20

0.25

0.30

AIC

dens

ity

no h site (287)h site (1174)

C

148 150 152 154

0.0

0.1

0.2

0.3

0.4

0.5

AIC

dens

ity

no h site (146)h site (329)

D

50 100 200 500 1000 2000

10

02

00

30

04

00

50

0

[ATP] (uM)

Ma

ss (

kDa

) R6X8 141.23R6X9 142.88R6X7 143.12R6X10 146.12R6X6 148.92R6X11 149.60R6X12 152.82R6X13 155.68R6X14 158.17R6X15 160.33R6X16 162.20R6X17 163.84R6X18 165.26

Data from Kashlan et al. Biochemistry 2002 41:462

Page 15: Modeling Combinatorially Complex Ribonucleotide Reductase

Conclusions (so far)

1. The dataset does not support the existence of an h-site

2. The dataset suggests that ~1/2 of the a-sites are not occupied by ATP

R1

R1

R1 R1

R1 R1

aa

[ATP]=~1000[dATP]So system prefers to have 3 a-sites empty and ready for dATPInhibition versus activation is partly due to differences in pockets

a

a

a

a

UDP

CDP

GDP

ADP

dTTP

dCTP

dGTP

dATP

dT

dC

dG

dA

DNA

dUMP

dU

TS

DCTD

dCK

DN

A p

olym

eras

e

TK1

cytosol

mitochondria

dT

dC

dG

dA

TK

2dG

K

dTMP

dCMP

dGMP

dAMP

dTTP

dCTP

dGTP

dATP

5NT

NT2

cytosol

nucleus

dUDP

dUTPdUTPase

dN

dN

dCK

flux activation inhibition

ATPordATP

RN

R

dCK

Page 16: Modeling Combinatorially Complex Ribonucleotide Reductase

36

3

26

2

12

1

2

6622

. 66220iii XR

i

XR

i

XR

i

R

T K

XR

K

XR

K

XR

K

RRR=

ij XR

ijij

K

XR=XR

][][][][ 321 63

62

21

20

iii XRkXRkXRkRkk

[ATP] (M)

CD

P R

ed

uct

ase

Act

ivity

(1

/se

c)

0.1

0.1

50

.20

.25

0.3

0 1000 2000 3000 10000

4.13.18 (AIC=-65, SSE=0.00257) 2.7.12 (AIC=-58.9, SSE=0.00386)i1 4 i2 13 i3 18 k0 0.31 K0 3.66 K1 25.86 K2 21.26 K3 56.23i1 2 i2 7 i3 12 k0 0.31 K0 3.86 K1 14.29 K2 12.48 K3 54.67

Page 17: Modeling Combinatorially Complex Ribonucleotide Reductase

The integers i1, i2, and i3 follow 18 ≥ i3 > i2 and i2/6 > i1/2 > 0. Models with occupied h-sites are in red, those without are in black. Sizes of spheres are proportional to 1/SSE.

0.002 0.004 0.006 0.008 0.010 0.012

05

01

00

15

02

00

25

03

00

SSE

Pro

ba

bili

ty D

en

sity

occupied h-sites (171 models)no occupied h-sites (54 models)

Page 18: Modeling Combinatorially Complex Ribonucleotide Reductase

Combinatorially Complex Equilibrium Model

Selection (ccems, CRAN 2009)

Systems Biology Markup Language

interface to R (SBMLR, BIOC 2004)

Model networks of enzymes

Model individual enzymes

SUMMARYSUMMARY

R1

R2 R2

R1 R1

R1 R1

R1 R1

R1

R1

R1

R1

R1 R1

R1

R1

R1

R1

R2 R2

R2 R2

Page 19: Modeling Combinatorially Complex Ribonucleotide Reductase

Figure 8. T. Thorsen et al. (S. R. Quake Lab) Science 2002

Figure 9. J. Melin and S. R. Quake Annu. Rev. Biophys. Biomol. Struct. 2007. 36:213–31

Background: Quake Lab MicrofluidicsBackground: Quake Lab Microfluidics

Figure 9 shows how a peristaltic pump is implemented by three valves that cycle through the control codes 101, 100, 110, 010, 011, 001, where 0 and 1 represent open and closed valves; note that the 0 in this sequence is forced to the right as the sequence progresses.

Page 20: Modeling Combinatorially Complex Ribonucleotide Reductase

Adaptive Experimental DesignsAdaptive Experimental DesignsFind best next 10 measurement Find best next 10 measurement conditions given models of data conditions given models of data collected.collected.

Need automated analyses in feedback Need automated analyses in feedback loop of automatic controls of microfluidic loop of automatic controls of microfluidic chips chips

µFluidic M-inputCMPM

C1

Mixing Control bits

C2C3

CM

TP

C1 …C2 C2 C3 buff buff buff

N-plug stream (C1:2C2:C3:C4)/N

Output

Output

C4

Streams of pulses

Filtered output

(a)

(b)

Output

Output Mixer

Dye-3 (C3)Dye-2 (C2)

Solvent Dye-1 (C1)

0b

2b

1b

3b

Flow velocity = 2 cm/sTP=100 ms, M=4N=20, Levels = 64

Dye-3

C3

Dye-1

Dye-2

C2

Water

C1

Mixing Channel

Output

Control Lines

3 mm C1

C2

C3

Page 21: Modeling Combinatorially Complex Ribonucleotide Reductase

Emphasis is on the stochastic component of the model.

Is there something in the black box or are the input wires disconnected from the output wires such that only thermal noise is being measured? Do we have enough data?

Model components: (Deterministic = signal) + (Stochastic = noise)

Statistics EngineeringEmphasis is on the deterministic component of the model

We already know what is in the box, since we built it. The goal is to understand it well enough to be able to control it.

Predict the best multi-agent drug dose time course schedules

Increasing amounts of data/knowledge

Why Systems BiologyWhy Systems Biology

Page 22: Modeling Combinatorially Complex Ribonucleotide Reductase

5

0

10

-5 0 5 10 15 20

25

35

45

minuteste

mp

era

ture

(C

)

-5 0 5 10 15 20

01

23

45

minutes

con

tro

l effo

rt

-5 0 5 10 15 20

25

35

45

minutes

tem

pe

ratu

re (

C)

-5 0 5 10 15 20

02

46

8

minutes

con

tro

l effo

rt+

-setpoint

Kp

Ki∫ Σ hot plate water temperature

Simple example of a control system for a single-input single-output (SISO) system

Page 23: Modeling Combinatorially Complex Ribonucleotide Reductase

dNTPs + AnalogsdNTPs + Analogs DNA + Drug-DNADNA + Drug-DNA

Damage DrivenDamage Drivenor or

S-phase DrivenS-phase Driven

dNTP demand dNTP demand is eitheris either

DNA repairDNA repair

SalvageSalvage

De novoDe novo

MMRMMR-- Cancer Treatment Cancer Treatment Strategy Strategy

IUdRIUdR

Page 24: Modeling Combinatorially Complex Ribonucleotide Reductase

Indirect Approach Indirect Approach pro-B Cell Childhood ALLpro-B Cell Childhood ALL

TT: TEL-AML1 with HR : TEL-AML1 with HR tt : TEL-AML1 with : TEL-AML1 with

CCRCCR tt : other outcome : other outcome

BB: BCR-ABL with CCR: BCR-ABL with CCR bb: BCR-ABL with HR: BCR-ABL with HR bb: censored, missing, : censored, missing,

or other outcome or other outcome

B

b

b

b

b

b

b

b

bb

bb

b

b

b

b

tt t

t

t

t

t t

ttt

tt

t

t

t

t

t

t

t

t

t

tt

t

t

t

t

t

t

tt

t

t

t

t

t

t

t

t

t

tt

t

t

tt

t

t

t

t

t

tt

tt

t

T

T

T

t

t

t

t

t

tt

t

tt

tt

t

tt

t

t

t

t

0 2 4 6 8 10 12 140

20

04

00

60

08

00

10

00

12

00

DNTS Flux (uM/hr)

DN

PS

Flu

x (u

M/h

r)

Ross et al: Blood 2003, 102:2951-2959 Yeoh et al: Cancer Cell 2002, 1:133-143

Radivoyevitch et al., BMC Cancer 6, 104 (2006)

Page 25: Modeling Combinatorially Complex Ribonucleotide Reductase

THF

CH2THF

CH3THF

CHOTHF

DHF

CHODHF

HCHO

GAR

FGAR

AICAR

FAICAR

dUMP dTMP

NADP+ NADPH

NADP+ NADPH

NADP+ NADPH

MetHcys

Ser

Gly

GART

ATIC

ATIC

TS

ATP

ADP

11R

2R 2

3

4

10

9 8

5 6

7

12 11

13

HCOOH

MTHFDMTHFR

MTR

DHFR

SHMT

FTS

FDS

Morrison PF, Allegra CJ: Folate cycle kinetics in human breast cancer cells. JBiolChem 1989, 264:10552-10566.

Page 26: Modeling Combinatorially Complex Ribonucleotide Reductase

ConclusionsConclusions

For systems biology to succeed:For systems biology to succeed:– move biological research toward systems move biological research toward systems

which are best understoodwhich are best understood– specialize modelers to become experts in specialize modelers to become experts in

biological literatures (e.g. dNTP Supply) biological literatures (e.g. dNTP Supply) Systems biology is not a serviceSystems biology is not a service

Page 27: Modeling Combinatorially Complex Ribonucleotide Reductase

AcknowledgementsAcknowledgements

Case Comprehensive Cancer CenterCase Comprehensive Cancer Center NIH (K25 CA104791)NIH (K25 CA104791) Charles Kunos (CWRU)Charles Kunos (CWRU) John Pink (CWRU)John Pink (CWRU) Chris Dealwis (CWRU)Chris Dealwis (CWRU) Anders Hofer (Umea) Anders Hofer (Umea) Yun Yen (COH)Yun Yen (COH) And thank you for listening! And thank you for listening!

Page 28: Modeling Combinatorially Complex Ribonucleotide Reductase

1e+02 1e+03 1e+04 1e+05 1e+06

01

00

20

03

00

40

05

00

[ATP] (uM)

Ma

ss (

kDa

)

R2X4.R6X8R2X3.R6X9R2X3.R6X12

Conjecture

Greater X/R ratio dominates at highLigand concentrations

In this limit the system wants to partition As much ATP into a bound form as possible

Page 29: Modeling Combinatorially Complex Ribonucleotide Reductase

library(ccems) # Ribonucleotide Reductase Exampletopology <- list( heads=c("R1X0","R2X2","R4X4","R6X6"), sites=list( # s-sites are already filled only in (j>1)-mers a=list( #a-site thread m=c("R1X1"), # monomer 1 d=c("R2X3","R2X4"), # dimer 2 t=c("R4X5","R4X6","R4X7","R4X8"), # tetramer 3 h=c("R6X7","R6X8","R6X9","R6X10", "R6X11", "R6X12") # hexamer 4 ), # tails of a-site threads are heads of h-site threads h=list( # h-site m=c("R1X2"), # monomer 5 d=c("R2X5", "R2X6"), # dimer 6 t=c("R4X9", "R4X10","R4X11", "R4X12"), # tetramer 7 h=c("R6X13", "R6X14", "R6X15","R6X16", "R6X17", "R6X18")# hexamer 8 ) ))g=mkg(topology,TCC=TRUE) dd=subset(RNR,(year==2002)&(fg==1)&(X>0),select=c(R,X,m,year))cpusPerHost=c("localhost" = 4,"compute-0-0"=4,"compute-0-1"=4,"compute-0-2"=4)top10=ems(dd,g,cpusPerHost=cpusPerHost, maxTotalPs=3, ptype="SOCK",KIC=100)

Page 30: Modeling Combinatorially Complex Ribonucleotide Reductase

Fast Total Concentration Constraint (TCC; i.e. g=0) solvers are critical to model

estimation/selection. TCC ODEs (#ODEs = #reactants) solve TCCs faster than kon =1 and koff = Kd systems (#ODEs = #species = high # in combinatorially complex situations)

Semi-exhaustive approach = fit all models with same number of parameters as parallel batch, then fit next batch only if current shows AIC improvement over previous batch.

Comments on Methods

Page 31: Modeling Combinatorially Complex Ribonucleotide Reductase

Recommended