+ All Categories
Home > Documents > Movimiento armónico simple

Movimiento armónico simple

Date post: 16-Jul-2015
Category:
Upload: hectorluisarrieta
View: 85 times
Download: 0 times
Share this document with a friend
Popular Tags:
14
Integrantes: Edicson Mariño C.I. V-19.969.280 Héctor Arrieta C.I. V- 18.333.045 Física II Barquisimeto, Enero de 2.015 República Bolivariana de Venezuela Ministerio del Poder Popular para la Educación Superior Instituto Universitario de Tecnología “Antonio José de Sucre” Extensión Barquisimeto
Transcript

Integrantes:

Edicson Mariño

C.I. V-19.969.280

Héctor Arrieta

C.I. V- 18.333.045

Física II

Barquisimeto, Enero de 2.015

República Bolivariana de Venezuela

Ministerio del Poder Popular para la Educación Superior Instituto Universitario de Tecnología “Antonio José de Sucre”

Extensión Barquisimeto

Movimiento armónico simple

El movimiento armónico simple es un movimiento periódico, oscilatorio y vibratorio. Para deducir y establecer las ecuaciones que rigen el movimiento armónico simple (unidimensional) es necesario analizar el movimiento de la proyección, sobre un

diámetro de una partícula que se mueve con movimiento circular uniforme (bidimensional). El movimiento armónico simple se puede estudiar desde diferentes

puntos de vista: cinemática, dinámico y energético. Entender el movimiento armónico simple es el primer paso para comprender el resto de los tipos de vibraciones complejas. El más sencillo de los movimientos periódicos es el que realizan los cuerpos elásticos.

Una clase muy especial de movimiento ocurre cuando la fuerza sobre un cuerpo es

proporcional al desplazamiento del cuerpo desde alguna posición de equilibrio. Si esta fuerza se dirige hacia la posición de equilibrio hay un movimiento repetitivo hacia

delante y hacia atrás alrededor de esta posición.

Un movimiento se llama periódico cuando a

intervalos iguales de tiempo, todas las variables del movimiento (velocidad, aceleración, etc.)

toman el mismo valor, es decir repiten los valores de las magnitudes que lo caracterizan. Un movimiento periódico es oscilatorio si la

trayectoria se recorre en ambas direcciones en los que la distancia del móvil al centro pasa

alternativamente por un valor máximo y un mínimo. El movimiento se realiza hacia adelante y hacia atrás, es decir que va y viene, (en vaivén)

sobre una misma trayectoria.

Un movimiento vibratorio es Armónico cuando la posición, velocidad y aceleración se puede

describir mediante funciones senos y cosenos. En general el movimiento armónico puede ser compuesto de forma que estén presentes varios

períodos simultáneamente. Cuando haya un solo período, el movimiento recibe el

nombre de Movimiento Armónico Simple o abreviadamente, M.A.S . Además de ser el más sencillo de analizar, constituye una descripción

bastante precisa de muchas oscilaciones que se observan en la naturaleza.

Oscilaciones y Vibraciones Es frecuente en la naturaleza la existencia

de movimientos en los cuales la velocidad y aceleración no son

constantes. Un movimiento que presenta tales características es el movimiento vibratorio u oscilatorio. En los

movimientos oscilatorios el cuerpo va de una posición extrema y regresa a la

posición inicial pasando siempre por la misma trayectoria. Algunos ejemplos de fenómenos en los que se presenta este

tipo de movimiento son: el latido del corazón, el péndulo de un reloj, las

vibraciones de los átomos.

Un movimiento oscilatorio

es vibratorio si su trayectoria es rectilínea y tiene su origen en el punto medio, de forma que las

separaciones a ambos lados, llamadas amplitudes, son iguales.

Entender el movimiento vibratorio es esencial para el estudio de los fenómenos

ondulatorios relacionados con el sonido y la luz. Como ejemplos de movimientos

vibratorios existe la vibración de las columnas de aire de los instrumentos musicales, la

vibración de un edificio o un puente por efecto de un terremoto, las ondas

Electromagnéticas que viajan en el vacío, una masa unida al extremo de un resorte, etc.

Entre los infinitos tipos de movimientos vibratorios que existen en la naturaleza el más

importante es el armónico simple.

Ejemplos de movimiento armónico simple pueden ser:

- Una lamina fija por un extremo y haciéndola vibrar por el otro extremo.

- Un sistema formado por un cuerpo suspendido de un resorte.

- El movimiento de un péndulo para desplazamientos pequeños.

- Un líquido contenido en un tubo doblado en U.

- Una esferita en una superficie cóncava.

- Una cuerda tensa

Para estudiar algunas de las características relacionadas con los

objetos que vibran se considera el caso de un resorte estirado

que se mueve en una superficie horizontal sin fricción.

Si el otro extremo del resorte se encuentra fijo a una pared y el

punto 0 representa la posición de equilibrio del cuerpo. Al

empujar una distancia A, hasta la posición B, una vez que se

suelte el cuerpo empezará a oscilar regresando a su posición de

equilibrio 0, hasta alcanzar una posición extrema B',

separándose nuevamente a una distancia A del punto 0. Como

no hay fricción, este movimiento de vaivén entre los

puntos B y B' sigue repitiéndose indefinidamente, se concluye

entonces que el cuerpo está oscilando o vibrando entre los

puntos B y B'.

Cuando se separa un resorte de su posición de equilibrio, estirándolo o comprimiéndolo,

adquiere un M.A.S. La fuerza recuperadora de ese resorte, variable con la elongación, es

la que genera una aceleración proporcional también a la elongación, la cual le confiere

ese movimiento de vaivén llamado M.A.S.

La fuerza F recuperadora, de la cual se habla es proporcional al desplazamiento Xpero de

sentido contrario a él, pudiéndose escribir que:

(Ec.1)

Esta relación conocida como la ley de Hooke indica que la fuerza es proporcional al desplazamiento y el signo (-) se coloca para señalar que la fuerza tiene sentido contrario al desplazamiento, que es una de las características más importante del M.A.S. Todos los

cuerpos elásticos que cumplan la Ley de Hooke, al ser sometidos a una fuerza vibran con M.A.S.

Todo punto material sometido a una fuerza restauradora proporcional al desplazamiento y de sentido opuesto a éste, realiza un movimiento lineal de vaivén llamado Movimiento Armónico Simple.

Ahora se va analizar el movimiento

considerando la segunda ley de Newton . Al soltar el cuerpo, la fuerza que actúa sobre él

produce una aceleración que es proporcional a de acuerdo a la segunda ley de Newton, que:

= Fuerza restauradora

m = Es la masa que vibra

= Es la aceleración instantánea

Donde:

(Ec.2)

Newton

Como K y m son valores constantes para cada caso, también lo será su cociente, lo cual implica que la aceleración es proporcional al desplazamiento y el signo (-) indica que la

aceleración tiene sentido contrario al desplazamiento.

Elementos del M.A.S.

De todos los movimientos oscilatorios el movimiento armónico simple (M.A.S.),

constituye una aproximación muy cercana a muchas oscilaciones encontradas en la

naturaleza, además que es muy fácil de describir matemáticamente. El nombre armónico

se debe así porque sus fórmulas dependen del Seno y del Coseno, que se

llaman funciones armónicas.

Antes de iniciar el estudio cuantitativo y cualitativo del M.A.S es útil definir algunos

términos de uso frecuente:

Oscilación o vibración Es el movimiento efectuado hasta volver al punto de la partida, es decir una ida y vuelta

del cuerpo en movimiento.

Período (T) Es el tiempo necesario para realizar una vibración u oscilación

completa.

Frecuencia ( ) Es el número de vibraciones completas que el cuerpo efectúa por

unidad de tiempo.

Elongación (x) Es el desplazamiento de la partícula que oscila desde la posición de equilibrio hasta cualquier posición en un instante dado

Amplitud (A) Es la máxima elongación, es decir, el desplazamiento máximo a partir de la posición de equilibrio.

Posición de equilibrio

Es la posición en la cual no actúa ninguna fuerza neta sobre la partícula oscilante.

Pulsación (w) Representa la velocidad angular del MCU auxiliar. Es una

constante del M.A.S

Fase inicial (ao) Representa la posición angular de la partícula para t= 0 en el

MCU auxiliar.

Fase (.t + ao ) Representa la posición angular de la partícula en el MCU auxiliar para el tiempo t.

Sistema de Masa-Resorte

Uno de los ejemplos más comunes de un cuerpo dotado de M.A.S es el de un cuerpo de masa unido al extremo de un resorte, que está sujeto a un punto fijo al otro extremo. El resorte está suspendido de un punto fijo S y que al soltarse desde un extremo C (donde

estaba comprimido), comienza a oscilar entre los extremos C y B pasando por la posición de equilibrio 0.

Por lo que si se desprecia el roce, la masa suspendida del resorte realizará un

movimiento oscilatorio alrededor de la posición de equilibrio 0. La amplitud del

movimiento es A.

El período de oscilación del Sistema masa-resorte se calcula por la

expresión: ; Donde m es la

masa del resorte y k es la constante elástica del resorte.

Salto en Bungee

a) Cuanto mayor sea la masa del cuerpo tanto mayor será su período de oscilación; es decir, un cuerpo de mayor masa oscila con menos

frecuencia (oscila lentamente)

b) Cuanto mayor sea la constante del resorte (resorte más rígido), tanto menor será el período

de oscilación, o sea, tanto mayor será la frecuencia con la cual oscila el cuerpo.

c) El período de oscilación es independiente de la amplitud del M.A.S.

La frecuencia de oscilación se calcula por la expresión:

Ejemplo Un automóvil de 1200 Kg de masa se construye con un armazón soportado por

cuatro resortes. Cada resorte tiene una constante de fuerza de 20000 New/m. Si

dos personas que viajan en el auto tienen una masa combinada de 160 Kg. Encuentre la frecuencia y período de vibración del

auto cuando pasa por un bache en el camino.

Solución

Suponga que la masa está distribuida equitativamente, de modo que cada resorte soporta un cuarto de la carga.

El movimiento de un Péndulo Simple

Un péndulo simple es un sistema mecánico, constituido por una masa puntual, suspendida de un hilo inextensible y sin peso. Cuando se separa hacia un lado de su

posición de equilibrio y se le suelta, el péndulo oscila en un plano vertical bajo la

influencia de la gravedad. El movimiento es periódico y oscilatorio. Si un pequeño cuerpo de masa m se encuentra sujeto al extremo de un hilo de peso despreciable, cuya

longitud es L y que oscila en un plano vertical. Este dispositivo constituye un Péndulo Simple en oscilación, herramienta muy importante en los trabajos realizados por Galileo, Newton y Huygens.

Cuando la masa m del péndulo se aleja de la posición de equilibrio 0 y se abandona a si misma, dicha masa oscila alrededor de esta

posición de equilibrio con un movimiento periódico y oscilatorio. Si la amplitud del

movimiento del péndulo es pequeña, la trayectoria curva BB' descrita por el cuerpo oscilante se puede considerar como un

segmento de recta horizontal. En estas condiciones es posible demostrar que la

aceleración de la masa es proporcional al desplazamiento de la posición de equilibrio y de sentido contrario; es decir para

pequeñas amplitudes el péndulo realiza un Movimiento Armónico Simple.

Se puede demostrar que el período de un péndulo simple es:

Con g la aceleración de gravedad del lugar. Dicha expresión indica que:

a) Cuanto mayor sea la longitud del péndulo, tanto mayor será su período. b) Cuanto mayor sea el valor de la aceleración de la gravedad en el lugar donde oscila el

péndulo, menor será su período. c) El período del péndulo no depende de su masa ni de la amplitud de la oscilación (siempre

que sea pequeña).

La frecuencia angular del Péndulo es

Aplicaciones del Péndulo

Mediciones de tiempo. Debido a la igualdad de duración de todas las

oscilaciones, el péndulo es de gran aplicación en la construcción de relojes, que son

mecanismos destinados a contar las oscilaciones, de un péndulo, traduciendo después el resultado de ese recuento a

segundos, minutos y horas.

Determinación del valor de la aceleración de

la gravedad.

El valor de g no es constante sino que sufre variaciones, según el lugar de la Tierra que se considere. Uno de los métodos más

adecuados para determinar el valor de la aceleración de la gravedad, en determinado

lugar, consiste en poner en movimiento un péndulo simple de longitud conocida, determinando con mayor exactitud posible

su período de oscilación. En efecto si en la

fórmula del período se

despeja g:

Dichas mediciones son importantes, pues las variaciones en los valores locales de g pueden proporcionar información acerca de la ubicación de petróleo y otros

valiosos recursos subterráneos.

De igual manera la longitud de un péndulo simple se puede determinar mediante la siguiente

fórmula:

PRINCIPIO FUNDAMENTAL DE LA HIDROSTÁTICA

Habrás oído muchas veces que la presión puede matar a un submarinista o romper un submarino, pero ¿por qué ocurre esto?. Cuando un cuerpo se encuentra en el interior de

un fluido (sea este líquido o gas) experimenta fuerzas en toda su superficie, estas

fuerzas son siempre perpendiculares a la superficie del cuerpo. Como sobre el cuerpo

sumergido actúa una fuerza por superficie entonces está actuando una presión.

Esto lo puedes comprobar muy fácilmente si haces un agujero en una botella de plástico llena de agua, observarás que el chorro sale perpendicular a la superficie donde hiciste

el agujero.

La presión en el interior de un fluido se denomina presión hidrostática y depende de la densidad del fluido y de la profundidad a la que estemos, esto se conoce como principio fundamental de la hidrostática y matemáticamente se expresa mediante la ecuación:

Esta expresión es muy importante pues permite calcular la presión dentro de un fluido si sabemos la densidad de éste (d) y la profundidad (h), la profundidad debe ir en unidades

del sistema internacional, es decir, en metros y la densidad debe ir obligatoriamente en kg/m3, es frecuente que te den la densidad en otras unidades típicas como g/mL, g/L,

g/cm3 en estos casos antes de nada debes pasarla a kg/m3, la presión se obtendrá, por tanto, en unidades del S.I. (Pascales).

Como puedes observar la presión dentro de un mismo fluido sólo depende de la

profundidad y no de la forma ni tamaño del recipiente y entonces habrá la misma presión a un metro de profundidad en un río que a un metro de profundidad en un "vaso" de un metro lleno de agua aunque parezca extraño.

LEY DE PASCAL

Aunque los dos sean fluidos hay una diferencia importante entre los gases y los

líquidos, mientras que los líquidos no se pueden comprimir en los gases sí es posible. Esto lo puedes comprobar fácilmente con una jeringuilla, llénala de aire, empuja el

émbolo y veras cómo se comprime el aire que está en su interior, a continuación llénala de agua (sin que quede ninguna burbuja de aire) observarás que por mucho esfuerzo que hagas no hay manera de mover en émbolo, los líquidos son incompresibles.

Esta incompresibilidad de los líquidos tiene como consecuencia el principio de Pascal

(s. XVII), que dice que si se hace presión en un punto de una masa de líquido esta

presión se transmite a toda la masa del líquido.

Como puedes ver en esta experiencia si se hace presión con la jeringuilla en un punto

del líquido que contiene la esfera, esta presión se transmite y hace salir el líquido a presión por todos los orificios.

La aplicación mas importante de este principio es la prensa hidráulica, ésta consta de

dos émbolos de diferente superficie unidos mediante un líquido, de tal manera que toda presión aplicada en uno de ellos será transmitida al otro. Se utiliza para obtener grandes

fuerzas en el émbolo mayor al hacer fuerzas pequeñas en el menor.

La presión ejercida en el émbolo 1 se transmitirá al émbolo 2, así pues p1 = p2 y por

tanto

𝑓1

𝑠=

𝑓2

𝑠

que constituye la fórmula de la prensa hidráulica, siendo F y S fuerza y superficie respectivamente. Como S2 es grande, la fuerza obtenida en ese émbolo F2 también lo

será.

PRINCIPIO DE ARQUÍMEDES

Por experiencia sabemos que los cuerpos pesan menos cuando están sumergidos en un líquido, esto se debe a que el fluido (con los gases también ocurre) ejerce sobre el

cuerpo una fuerza hacia arriba que llamamos empuje, esta fuerza hacia arriba.

Sobre la cara inferior actúa más presión que en la superior, por estar a mayor profundidad y, por tanto, la fuerza F2 es mayor que la F1, las dos fuerzas laterales serán iguales y se anulan una con la otra, así pues sobre el cuerpo sumergido actúa una fuerza

hidrostática resultante hacia arriba, el empuje (E).

Arquímedes (s. III a.C.) fue el primero en darse cuenta de este empuje y además calculó a cuánto equivalía éste, el principio de Arquímedes dice que cuando un cuerpo se

encuentra sumergido en un fluido experimenta una fuerza hacia arriba, llamada

empuje, igual al peso del fluido que ha desalojado.

Calculemos el peso del fluido desalojado, éste será igual a la masa desalojada

multiplicada por la aceleración de la gravedad y a su vez esta masa será igual al volumen de fluido desalojado (volumen del cuerpo que está sumergido) por la densidad de éste:

E = Peso desalojado = m des· g = d fluido · V sumergido · g

Esta expresión permite calcular el empuje que sufre un cuerpo sumergido en un fluido,

la densidad del fluido (dF) debe estar en unidades del S.I. (kg/m3), el volumen sumergido en m3 y el empuje como es una fuerza saldrá en Newtons.

Sobre un cuerpo sumergido tenemos actuando por tanto dos fuerzas, una es el empuje

como acabamos de ver y la otra, lógicamente, es el peso del propio cuerpo. Si se introduce un cuerpo en el interior de un fluido puede ocurrir que el peso sea mayor que

el empuje y entonces el cuerpo se irá al fondo (la resta de peso menos empuje se

denomina "peso aparente"), o bien el empuje será mayor que el peso y entonces flotará y emergerá en parte hasta que el empuje disminuya hasta igualar el peso y se quede en

equilibrio a flote.

LEYES APLICADAS A LOS GASES

Hasta ahora hemos hablado de fluidos en general, pero en el caso de los gases hay que hacer alguna apreciación debido a su compresibilidad, veamos qué cambia de lo dicho

hasta ahora en caso de aplicarlo a gases.

Principio fundamental de la hidrostática: Sigue siendo cierto que la presión aumenta con la profundidad pero la expresión que nos permite calcular ésta ( p = d · g · h) sólo sirve en caso de que la densidad del fluido sea constante, en el caso de líquidos no hay

problema pues su densidad es constante pero los gases son compresibles y por ejemplo en el caso de la atmósfera la densidad cambia mucho con la altitud. Cuanto mas cerca

del suelo más densidad ya que más comprimido está, por tanto no tenemos manera de calcular la presión mediante este principio.

Ley de Pascal: Sigue siendo válida pero hay que tener en cuenta que no toda la presión

aplicada se transmitirá por completo a toda la masa de gas, sino sólo parte ya que el gas se comprime. Esto hace que no se puedan usar gases para construir prensas hidráulicas.

Principio de Arquímedes: Sigue siendo aplicable tal y como hicimos en los líquidos, aunque los empujes que sufren los cuerpos sumergidos en gases son muy pequeños

debido a la baja densidad de éstos.


Recommended