+ All Categories
Home > Documents > Outline - IEEEewh.ieee.org/soc/cpmt/presentations/cpmt1301a.pdf · - to avoid RC delay ... Summary...

Outline - IEEEewh.ieee.org/soc/cpmt/presentations/cpmt1301a.pdf · - to avoid RC delay ... Summary...

Date post: 28-Jul-2018
Category:
Upload: vongoc
View: 217 times
Download: 0 times
Share this document with a friend
29
1/12/2013 1 New Class of ULow-k for Advanced Interconnects: Fundamentals and Application of Silicon Carbide Hybrid Glasses Yusuke Matsuda Lecturer and Ph.D. Candidate Department of Materials Science and Engineering Stanford University Advisor: Professor Reinhold Dauskardt January 9 th , 2013 Motivation Experimental Methods Mechanical Properties of Silicon Carbide Hybrid Glasses role of glass network connectivity and plasticity toughening interface by adjacent plasticity moisture-assisted cracking Silicon Carbide Hybrid Glasses as new Low-k Dielectrics Summary Outline Sant Clara Valley Section, Components, Packaging and Manufacturing Technology Society Chapter www.cpmt.org/scv
Transcript
Page 1: Outline - IEEEewh.ieee.org/soc/cpmt/presentations/cpmt1301a.pdf · - to avoid RC delay ... Summary Outline . 1/12/2013 8 ... (Novel-Prize Laureate), 1995 . 1/12/2013 9 Mean Field

1/12/2013

1

New Class of ULow-k for Advanced Interconnects:Fundamentals and Application of Silicon Carbide

Hybrid Glasses

Yusuke Matsuda Lecturer and Ph.D. Candidate

Department of Materials Science and Engineering Stanford University

Advisor: Professor Reinhold Dauskardt

January 9th, 2013

Motivation

Experimental Methods

Mechanical Properties of Silicon Carbide Hybrid Glasses – role of glass network connectivity and plasticity – toughening interface by adjacent plasticity – moisture-assisted cracking

Silicon Carbide Hybrid Glasses as new Low-k Dielectrics

Summary

Outline

Sant Clara Valley Section, Components, Packagingand Manufacturing Technology Society Chapterwww.cpmt.org/scv

Page 2: Outline - IEEEewh.ieee.org/soc/cpmt/presentations/cpmt1301a.pdf · - to avoid RC delay ... Summary Outline . 1/12/2013 8 ... (Novel-Prize Laureate), 1995 . 1/12/2013 9 Mean Field

1/12/2013

2

Low-k Dielectrics in Microelectronic Interconnects

Cu

silica-based low-k dielectrics

- to avoid RC delay - to reduce power consumption

Silica-Based Low-k Dielectrics and Challenges

1997 2002 2004 2006 2008

SiO2

k=4.3

F-SiO2

k=3.8

SiCOH

k=3.0 SiCOH

k=2.7 p-SiCOH

k=2.4

IBM volume manufacturing of CMOS microprocessors (Dubois, et al. Chem. Rev. 2010, 110, 56–110 )

mechanically weaker

Kim, et al, 2011 IITC proc. p911 Susko et al, ECS Trans. 16 (19) 51-60 (2009)

Window glass Hybrid glass0

2

4

6

8

Mech

an

ica

l to

ugh

ne

ss (

J m

-2)

SiO2 low-k (k=2.5)

~1/3

Page 3: Outline - IEEEewh.ieee.org/soc/cpmt/presentations/cpmt1301a.pdf · - to avoid RC delay ... Summary Outline . 1/12/2013 8 ... (Novel-Prize Laureate), 1995 . 1/12/2013 9 Mean Field

1/12/2013

3

Challenge: Moisture-Assisted Cracking

Michalske, Nature p511, 1982

mechanochemistry between Si-O and H2O

dramatically reduces fracture resistance of silica-based ULK

Device Aqueous solution

Pressure

Wet processes (CMP)

Impact on Chip Packaging Interaction

Shearing direction

Cu bump

interconnect layers

polyimide

passivation UBM

Courtesy of Alex Hsing at Dauskardt group

Stack 1 Stack 2 Stack 30

2

4

6

8

10

12

14

Failu

re E

ne

rgy,

f (J)

Dielectric Stack

decreasing k

Page 4: Outline - IEEEewh.ieee.org/soc/cpmt/presentations/cpmt1301a.pdf · - to avoid RC delay ... Summary Outline . 1/12/2013 8 ... (Novel-Prize Laureate), 1995 . 1/12/2013 9 Mean Field

1/12/2013

4

Solution: Non Silica-Based ULK

DSV-BCB

F-DLC polyimid

a few examples of unsuccessful attempts

SiLK

Can we make ULKs with silicon carbide hybrid glasses?

Hybrid structure – inorganic network: Si-C, C-C, Si-Si – terminal bonds: Si-Hx, C-Hx

Nanostructures – nanoporosity

Tunable multi-functionality – optical and electrical

Silicon Carbide Hybrid Glass Films

Si

H

C

CH3

• little bond polarity • excellent chemical/thermal stability • no moisture-sensitive bonds limited “moisture-assisted cracking”

significant advantages

Page 5: Outline - IEEEewh.ieee.org/soc/cpmt/presentations/cpmt1301a.pdf · - to avoid RC delay ... Summary Outline . 1/12/2013 8 ... (Novel-Prize Laureate), 1995 . 1/12/2013 9 Mean Field

1/12/2013

5

Applications of Silicon Carbide Hybrid Glass

water filter micro/nano machine (Sandia National Lab)

semiconductor solar cell

optics

optical waveguide (Shoji, App. Phy. Exp. 2010)

Brittle inorganic network

Reduced network connectivity

Actual sensitivity to moisture-assisted cracking has not been reported.

Fundamental Challenge: Mechanically Fragile

Effects of glass network connectivity on mechanical properties are unknown…

Si

H

C

CH3

reduced connectivity

Si C

fully connected (crystalline)

hydrogenation

Is it possible to confer plasticity to the glasses?

Gc = G0 + Gplasticity ~ negligible

fracture resistance

Page 6: Outline - IEEEewh.ieee.org/soc/cpmt/presentations/cpmt1301a.pdf · - to avoid RC delay ... Summary Outline . 1/12/2013 8 ... (Novel-Prize Laureate), 1995 . 1/12/2013 9 Mean Field

1/12/2013

6

To understand the fundamental connections between the molecular structure and mechanical properties – network connectivity – plasticity – moisture-assisted cracking

To improve their mechanical properties and create new

hybrid materials

Objective

Motivation

Experimental Methods

Mechanical Properties of Silicon Carbide Hybrid Glasses – role of glass network connectivity and plasticity – toughening interface by adjacent plasticity – moisture-assisted cracking

Silicon Carbide Hybrid Glasses as New Low-k Dielectrics

Summary

Outline

Page 7: Outline - IEEEewh.ieee.org/soc/cpmt/presentations/cpmt1301a.pdf · - to avoid RC delay ... Summary Outline . 1/12/2013 8 ... (Novel-Prize Laureate), 1995 . 1/12/2013 9 Mean Field

1/12/2013

7

Experimental Methods

Elemental Analysis and Glass Structure • 13C solid state NMR • Nuclear reaction analysis/Rutherford backscattering • FTIR, X-ray photoelectron spectroscopy

Mechanics Characterization • Four Point Bend (FPB) and Double Cantilever Beam (DCB) geometries

• Nanoindentation, Surface Acoustic Wave (SAW)

FPB adhesion

DCB cohesion Silicon

barrier film

barrier film film of interests

thin film

adhesion

cohesion

Motivation

Experimental Methods

Mechanical Properties of Silicon Carbide Hybrid Glasses – role of glass network connectivity and plasticity – toughening interface by adjacent plasticity – moisture-assisted cracking

Silicon carbide hybrid glasses as New Low-k Dielectrics

Summary

Outline

Page 8: Outline - IEEEewh.ieee.org/soc/cpmt/presentations/cpmt1301a.pdf · - to avoid RC delay ... Summary Outline . 1/12/2013 8 ... (Novel-Prize Laureate), 1995 . 1/12/2013 9 Mean Field

1/12/2013

8

Plasma enhanced chemical vapor deposition (PECVD) Hydrogenation up to 60 at.%

– connectivity – k: 2.8-7.2

A wide variety of chemical compositions – Stoichiometric (Si/C ~ 1) – Non-stoichiometric (C/Si > 1)

Nanoporosity by second organic phases

Hydrogenated Amorphous Silicon Carbide (a-SiC:H)

Si

H

C

CH3

Silicon barrier film

barrier film

a-SiC:H (500 nm)

Mechanical Properties and Glass Network Connectivity

bond

energy

area

bonds

area

energyGc

connectivity

Fracture properties (brittle materials)

rm

Nstiffness

m

NE

12

connectivity

Elastic properties

r

Si

H

C

CH3

“The deepest and most interesting unsolved problem in solid state theory is probably the theory of the nature of glass and the glass transition” P. W. Anderson (Novel-Prize Laureate), 1995

Page 9: Outline - IEEEewh.ieee.org/soc/cpmt/presentations/cpmt1301a.pdf · - to avoid RC delay ... Summary Outline . 1/12/2013 8 ... (Novel-Prize Laureate), 1995 . 1/12/2013 9 Mean Field

1/12/2013

9

Mean Field Approach for Connectivity

H

Hii

x

xxNr

1

2'

C Si

Si

Si

Si

C Si

H

Si

H

Ni: number of bonds in element i NSi: 4, NC: 3 or 4, NH = 1

xi: atomic fraction of element i

max <r’>=4 crystalline SiC

<r’>=2 a-SiC:H

- Rutherford backscattering - 13C NMR sp2 and sp3 C

average network bond number (per atom)

simply count number of network bonds

Effects of Connectivity on Elastic Properties

2.0 2.5 3.0 3.5 4.00

100

200

300

400

500 Stoichiometric films (Si/C~1)

Non-stoichiometric films (Si/C>5)

Fitting

SiO2

Yo

un

g's

mo

du

lus,

E (

GP

a)

Average network bond number, <r'>

C Si

H

Si

H

<r’> = 2

Bulk SiC

<r’> = 4

C Si

Si

Si

Si

rigidity percolation <r’c> ~ 2.4

rm

Nstiffness

m

NE

12

Page 10: Outline - IEEEewh.ieee.org/soc/cpmt/presentations/cpmt1301a.pdf · - to avoid RC delay ... Summary Outline . 1/12/2013 8 ... (Novel-Prize Laureate), 1995 . 1/12/2013 9 Mean Field

1/12/2013

10

Effects of Connectivity on Fracture Energy

2.0 2.5 3.0 3.5 4.00

2

4

6

8

10

12

Co

he

siv

e f

ractu

re e

ne

rgy,

Gc (

J/m

2)

Average network bond number, <r'>

stoichiometric Si/C~1

bond

energy

area

bonds

area

energyGc

connectivity

Matsuda, Kim, Stebbins, Dauskardt, et al., in review

Effects of Connectivity on Fracture Energy

2.0 2.5 3.0 3.5 4.00

2

4

6

8

10

12

Co

he

siv

e f

ractu

re e

ne

rgy,

Gc (

J/m

2)

Average network bond number, <r'>

non-stoichiometric (C/Si ~5) porous (12% porosity)

plasticity? Gc=G0 + Gplasticity

crystalline SiC (Lawn,1993)

C/Si ~5 non-porous

stoichiometric Si/C~1

Matsuda, Kim, Stebbins, Dauskardt, et al., in review

Page 11: Outline - IEEEewh.ieee.org/soc/cpmt/presentations/cpmt1301a.pdf · - to avoid RC delay ... Summary Outline . 1/12/2013 8 ... (Novel-Prize Laureate), 1995 . 1/12/2013 9 Mean Field

1/12/2013

11

stoichiometric Si/C~1

Effects of Connectivity on Fracture Energy

250 150 100 50 0 -50 PPM

200 2.0 2.5 3.0 3.5 4.00

2

4

6

8

10

12

Co

he

siv

e f

ractu

re e

ne

rgy,

Gc (

J/m

2)

Average network bond number, <r'>

non-stoichiometric (C/Si ~5) porous (12% porosity)

plasticity? Gc=G0 + Gplasticity

C/Si ~5 non-porous

C=C

CHx (-C-C-C-C-)

C-Si

13C NMR

porous

non-porous

Matsuda, Kim, Stebbins, Dauskardt, et al., in review

crystalline SiC (Lawn, 1993)

Plasticity in Non-Stoichiometric a-SiC:H

0 2 4 6 8 10-500

-400

-300

-200

-100

0

100

Vert

ica

l D

ispla

ce

men

t, z

(nm

)

Horizontal Displacement, x (m)

porous load=3mg σys=104MPa

non-porous load=5mg σys=792MPa

pileup

nanoindentation

0 500 1000 1500 2000 25000

3

6

9

12

15

Fra

ctu

re E

ne

rgy, G

c (

J/m

2)

Film Thickness, h(nm)

thickness dependence of Gc

non porous

porous crack tip

plastic zone 2rp

215nm

3nm

porous

p2r

plasticity

Matsuda, Dauskardt, et al., Acta Materialia, 2012

HxSi(CH 3)1-x R SiSi

+

400 oC E-beam

methylsilane phenyl porogen sp3 CHx chain

Origin of plasticity

Matsuda, Kim, Stebbins, Dauskardt, et al., in review

Page 12: Outline - IEEEewh.ieee.org/soc/cpmt/presentations/cpmt1301a.pdf · - to avoid RC delay ... Summary Outline . 1/12/2013 8 ... (Novel-Prize Laureate), 1995 . 1/12/2013 9 Mean Field

1/12/2013

12

Tunable Plasticity Contribution to Gc phenyl porogen

Matsuda, Stebbins, Dauskardt, et al., in review

400 200 100 0 -200 -300 -400

chemical shift (ppm)

sp2 C CHx Si-CH3

300 PPM

0%

68%

34%

17%

100%

-100

R

0%

68%

34%

17%

100%

0 25 50 75 1000

2

4

6

8

10

12

Co

he

siv

e f

ractu

re e

ne

rgy,

Gc (

J m

-2)

Porogen amount relative to SiC-15, %

R

Plasticity contribution is tunable!

Chemical/Thermal stability ~ 400 oC

Motivation

Experimental Methods

Mechanical Properties of Silicon Carbide Hybrid Glasses – role of glass network connectivity and plasticity – toughening interface by adjacent plasticity – moisture-assisted cracking

Silicon carbide hybrid glasses as New Low-k Dielectrics

Summary

Outline

Page 13: Outline - IEEEewh.ieee.org/soc/cpmt/presentations/cpmt1301a.pdf · - to avoid RC delay ... Summary Outline . 1/12/2013 8 ... (Novel-Prize Laureate), 1995 . 1/12/2013 9 Mean Field

1/12/2013

13

Toughening Interface by Adjacent Plasticity

GC = G0 + Gplasticity

silicon substrate

brittle film weak interface

G0

a-SiC:H with plasticity plastic

zone, Gplasticity

fragile materials σ

r

Limitations of Metal and Polymers for Toughening

limited metal plasticity at the nanoscale

• low dislocation mobility

• small grain size (Hall-Petch)

(Lane, Dauskardt, 2000)

limitations of polymer • thermal stability

• too soft

0 50 100 150 200 250 0 2 4 6 8

10 12 14 16 18

Frac

ture

Ene

rgy,

Gc (

J.m

2 )

Film Thickness, h (nm)

SiO2

SiCN Gpl h polymer

(Kearney, Dauskardt, 2004)

Polymer films

10 -2 10 -1 1 10 0

20

40

60

80

100

20

Copper Layer Thickness, h (m)

Inte

rface

Fra

ctur

e E

nerg

y, G

c (J/

m2 )

substrate dielectric glass

metal

thickness limit ~300 nm

separation25nm

Page 14: Outline - IEEEewh.ieee.org/soc/cpmt/presentations/cpmt1301a.pdf · - to avoid RC delay ... Summary Outline . 1/12/2013 8 ... (Novel-Prize Laureate), 1995 . 1/12/2013 9 Mean Field

1/12/2013

14

Toughening Interface by Adjacent Plasticity

GC = G0 + Gplasticity

a-SiC:H (25-250 nm)

fragile dielectrics

silicon substrate

brittle film (25 nm) fracture, G0 (1.6 J/m2)

< 250 nm

25 - 1000 nm

Limited Film Thickness

a-SiC:H with plasticity

mimicking a typical device structure

excellent thermal & chemical stability

Effects of a-SiC:H Film Thickness

0 50 100 150 200 2500

1

2

3

4

5

6

7

Ad

he

sio

n e

ne

rgy,

GC (

J m

-2)

a-SiC:H film thickness, ha-SiC:H

(nm)

Gpl

G0

Gc = G0 + Gplasticity

fragile dielectrics (100 nm)

Si

Plastic a-SiC:H (25-250 nm)

brittle film (25 nm)

Matsuda, Ryu, Dauskardt et al., To be submitted to Small

0 50 100 150 200 250

0.00

0.25

0.50

0.75

a-SiC:H film thickness, ha-SiC:H

(nm)

Pla

stic z

on

e s

ize

, (

m2)

FEA simulation

Fragile dielectrics

Si

brittle film

Page 15: Outline - IEEEewh.ieee.org/soc/cpmt/presentations/cpmt1301a.pdf · - to avoid RC delay ... Summary Outline . 1/12/2013 8 ... (Novel-Prize Laureate), 1995 . 1/12/2013 9 Mean Field

1/12/2013

15

0 200 400 600 800 10000

4

8

12

16

Adh

esio

n E

ne

rgy G

C (

J m

-2)

Dielectrics thickness (nm)

Effects of Separation Thickness

Si

Plastic a-SiC:H (250 nm)

brittle films

fragile dielectrics (25 - 1000nm)

Motivation

Experimental Methods

Mechanical Properties of Silicon Carbide Hybrid Glasses – role of glass network connectivity and plasticity – toughening interface by adjacent plasticity – moisture-assisted cracking

Silicon carbide hybrid glasses as New Low-k Dielectrics

Summary

Outline

Page 16: Outline - IEEEewh.ieee.org/soc/cpmt/presentations/cpmt1301a.pdf · - to avoid RC delay ... Summary Outline . 1/12/2013 8 ... (Novel-Prize Laureate), 1995 . 1/12/2013 9 Mean Field

1/12/2013

16

Moisture-Assisted Cracking

Guyer, Dauskardt (unpublished results)

30% RH

Gc

Organosilicate low-k

Gth 30%

Cra

ck g

row

th v

elo

city, v (m

s-1

)

Moisture-Assisted Cracking

Guyer, Dauskardt (unpublished results)

30% RH

85% RH

Gc

Organosilicate low-k

Gth

Cra

ck g

row

th v

elo

city, v (m

s-1

)

Gth 85%

30%

ΔGth

Page 17: Outline - IEEEewh.ieee.org/soc/cpmt/presentations/cpmt1301a.pdf · - to avoid RC delay ... Summary Outline . 1/12/2013 8 ... (Novel-Prize Laureate), 1995 . 1/12/2013 9 Mean Field

1/12/2013

17

Moisture-Assisted Cracking in a-SiC:H Films

Silicon carbide hybrid glasses

0.5 1.0 1.5 2.0 2.510

-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

N2

90% RH

N2

Cra

ck G

row

th V

elo

city, v (

ms

-1)

Applied Strain Energy Release Rate, G (J m-2)

E: 11.5GPa

k: 4.0

Temp: 25oC

90%RH

Matsuda, Dauskardt, et al., Acta Materialia, 2012

Much less sensitivity, but still exhibit crack growth below Gc

ΔGth~ 0

Moisture-Assisted Cracking in a-SiC:H Films

0.5 1.0 1.5 2.0 2.510

-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

N2

90% RH

N2

Cra

ck G

row

th V

elo

city, v (

ms

-1)

Applied Strain Energy Release Rate, G (J m-2)

E: 11.5GPa

k: 4.0

Temp: 25oC

90%RH

Matsuda, Dauskardt, et al., Acta Materialia, 2012

Si-CH2-Si Si-O-Si

Abs

orba

nce

(a.u

.)

(King, et al. J. Non. Crys. sol. 2011)

formation of Si-O-Si bonds

Si − H + H2O → SiOH + H2 Si − OH + Si − OH → Si − O − Si + H2O

Silicon carbide hybrid glasses

ΔGth~ 0

Si

Si

H

H

removing Si-Hx groups can result in total insensitivity

Page 18: Outline - IEEEewh.ieee.org/soc/cpmt/presentations/cpmt1301a.pdf · - to avoid RC delay ... Summary Outline . 1/12/2013 8 ... (Novel-Prize Laureate), 1995 . 1/12/2013 9 Mean Field

1/12/2013

18

Moisture-Assisted Cracking in a-SiC:H Films

0.5 1.0 1.5 2.0 2.510

-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

N2

90% RH

N2

Cra

ck G

row

th V

elo

city, v (

ms

-1)

Applied Strain Energy Release Rate, G (J m-2)

E: 11.5GPa

k: 4.0

Temp: 25oC

90%RH

Matsuda, Dauskardt, et al., Acta Materialia, 2012

Silicon carbide hybrid glasses

G = GSi-C + GSi-O

separation of strain energy G

crack plane

unruptured plane

moisture sensitive

insensitive

crack front

ΔGth~ 0

Moisture-Assisted Cracking in a-SiC:H Films

0.5 1.0 1.5 2.0 2.510

-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

N2

90% RH

N2

Cra

ck G

row

th V

elo

city, v (

ms

-1)

Applied Strain Energy Release Rate, G (J m-2)

E: 11.5GPa

k: 4.0

Temp: 25oC

90%RH

Silicon carbide hybrid glasses

crack plane

unruptured plane

moisture sensitive

insensitive

crack front

threshold, Gth

Gth = GcSi-C + 2g Si-O

ΔGth~ 0

Matsuda, Dauskardt, et al., Acta Materialia, 2012

Page 19: Outline - IEEEewh.ieee.org/soc/cpmt/presentations/cpmt1301a.pdf · - to avoid RC delay ... Summary Outline . 1/12/2013 8 ... (Novel-Prize Laureate), 1995 . 1/12/2013 9 Mean Field

1/12/2013

19

Moisture-Assisted Cracking in a-SiC:H Films

0.5 1.0 1.5 2.0 2.510

-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

N2

90% RH

N2

Cra

ck G

row

th V

elo

city, v (

ms

-1)

Applied Strain Energy Release Rate, G (J m-2)

E: 11.5GPa

k: 4.0

Temp: 25oC

90%RH

Matsuda, Dauskardt, et al., Acta Materialia, 2012

Silicon carbide hybrid glasses

crack plane

unruptured plane

crack front

humiditylow

humidity high

OH

OH

SiOSithP

PkTNG

2

2ln

# Si-O-Si ruptured bonds

vapor pressure

ΔGth~ 0

Model Prediction: ΔGth

0.5 1.0 1.5 2.0 2.510

-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

N2

90% RH

N2

Cra

ck G

row

th V

elo

city, v (

ms

-1)

Applied Strain Energy Release Rate, G (J m-2)

E: 11.5GPa

k: 4.0

Temp: 25oC

90%RH

Humidity range Gth [J/m2]

20 – 70% RH 0.005

1-90% RH 0.019

0.1-90% RH 0.028

predictions

consistent with measurements

~1018 bonds/m2

humidity low

humidityhigh

2

2lnOH

OH

SiOSithP

PkTNG

ΔGth~ 0

Matsuda, Dauskardt, et al., Acta Materialia, 2012

Silicon carbide hybrid glasses

Page 20: Outline - IEEEewh.ieee.org/soc/cpmt/presentations/cpmt1301a.pdf · - to avoid RC delay ... Summary Outline . 1/12/2013 8 ... (Novel-Prize Laureate), 1995 . 1/12/2013 9 Mean Field

1/12/2013

20

How Sensitivity to Moisture-Assisted Cracking Change with Si-O-Si Bond Density?

O

H

Si

Si

C

C

Matsuda, King, Dauskardt, to appear in Thin Solid Films

600 800 1000 1200

Absorb

ance (

a.u

.)

Wavenumber (cm-1)

O

divalent

Si-O-Si/Si-CH2-Si Si-C

oxygen at.%

oxygen to ~ 20 at.% moisture sensitive

Oxidized a-SiC:H films

Technological motivation O-doping for tailoring electrical/optical properties

1.0 1.5 2.0 2.5 3.0 3.510

-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

20% RH

70% RH

a-SiCO:H-1

xXPS

oxygen: 10.3 at.%

E: 15.2 GPa

25 oC

Cra

ck g

row

th v

elo

city, v (

m s

-1)

Applied strain energy release rate, G (J m-2)

Gth 1.0 1.5 2.0 2.5 3.0 3.5

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

20% RH

70% RH

a-SiCO:H-6

xXPS

oxygen: 20.0 at.%

E: 30.3 GPa

25 oC

Cra

ck g

row

th v

elo

city,

v (

m s

-1)

Applied strain energy release rate, G (J m-2)

Gth 1.0 1.5 2.0 2.5 3.0 3.5

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

20% RH

70% RH

a-SiCO:H-3

xXPS

oxygen: 11.1 at.%

E: 15.5 GPa

25 oC

Cra

ck g

row

th v

elo

city,

v (

m s

-1)

Applied strain energy release rate, G (J m-2)

Gth

increasing sensitivity

ρSi-O-Si: 5.8 nm-3 ρSi-O-Si: 8.6 nm-3 ρSi-O-Si: 23.9 nm-3

Matsuda, King, Oliver, Dauskardt, in review

Moisture Sensitivity and Si-O-Si Bond Density

Page 21: Outline - IEEEewh.ieee.org/soc/cpmt/presentations/cpmt1301a.pdf · - to avoid RC delay ... Summary Outline . 1/12/2013 8 ... (Novel-Prize Laureate), 1995 . 1/12/2013 9 Mean Field

1/12/2013

21

0 5 10 15 20 25 30

0.0

0.1

0.2

0.3

0.4

0.5

G

th (

J m

-2)

Si-O-Si bond density, Si-O-Si

(bond nm-3)

Gth

= 0.0225exp(0.1038Si-O-Si

)

humidity low

humidityhigh

2

2lnOH

OH

SiOSithP

PkTNG

new atomistic model

0 5 10 15 20 25 30

0

20

40

60

80

new atomistic model

NS

i-O

-Si (

bonds n

m-2)

Si-O-Si Bond Density, Si-O-Si

(bonds nm-3)

NSi-O-Si

Moisture Sensitivity and Si-O-Si Bond Density

Matsuda, King, Oliver, Dauskardt, in review

0 5 10 15 20 25 30

0

20

40

60

80

planar crack model

NSi-O-Si

= 2/3

Si-O-Si

new atomistic model

NS

i-O

-Si (

bonds n

m-2)

Si-O-Si Bond Density, Si-O-Si

(bonds nm-3)

Matsuda, King, Oliver, Dauskardt, in review

Si SiCN

SiCN

film

Si SiCN

SiCN

…disproportionate number of Si-O-Si bonds ruptured in moisture-assisted cracking…

humidity low

humidityhigh

2

2lnOH

OH

SiOSithP

PkTNG

new atomistic model

0 5 10 15 20 25 30

0.0

0.1

0.2

0.3

0.4

0.5

G

th (

J m

-2)

Si-O-Si bond density, Si-O-Si

(bond nm-3)

Gth

= 0.0225exp(0.1038Si-O-Si

)

NSi-O-Si

Moisture Sensitivity and Si-O-Si Bond Density

Page 22: Outline - IEEEewh.ieee.org/soc/cpmt/presentations/cpmt1301a.pdf · - to avoid RC delay ... Summary Outline . 1/12/2013 8 ... (Novel-Prize Laureate), 1995 . 1/12/2013 9 Mean Field

1/12/2013

22

0 5 10 15 20 25 30

0

20

40

60

80

planar crack model

NSi-O-Si

= 2/3

Si-O-Si

new atomistic model

NS

i-O

-Si (

bonds n

m-2)

Si-O-Si Bond Density, Si-O-Si

(bonds nm-3)

Si SiCN

SiCN

film

Si SiCN

SiCN

…disproportionate number of Si-O-Si bonds ruptured in moisture-assisted cracking…

Si

O

C

O

O

O

Si

crack path meandering

5.76 eV

planer path 7.54 eV

bond energies (Wiederhorn 1980) • Si-C: 4.66eV

• Si-O (moist) : 1.44 eV

Moisture Sensitivity and Si-O-Si Bond Density

NSi-O-Si

Matsuda, King, Oliver, Dauskardt, in review

Atomistic Crack Path Meandering in MD

Matsuda, Oliver, King, Dauskardt, in review

max-flow min-cut theorem (Ford, 1956), Oliver (2010)

generate molecular structure

mathematically count ruptured bonds

O

H

Si

Si

C

C

bond length & angles: crystalline SiC oxygen: ~17 at.%

Page 23: Outline - IEEEewh.ieee.org/soc/cpmt/presentations/cpmt1301a.pdf · - to avoid RC delay ... Summary Outline . 1/12/2013 8 ... (Novel-Prize Laureate), 1995 . 1/12/2013 9 Mean Field

1/12/2013

23

Atomistic Crack Path Meandering in MD

Matsuda, Oliver, King, Dauskardt, in review

max-flow min-cut theorem (Ford, 1956), Oliver (2010)

generate molecular structure

mathematically count ruptured bonds

O

H

Si

Si

C

C

bond length & angles: crystalline SiC oxygen: ~17 at.%

change bond strength

Si-O Si-C

Atomistic Crack Path Meandering in MD

0.0 0.5 1.0 1.5 2.00

1

2

3

4

5total bond ruptured

Si-C bonds ruptured

Ru

ptu

red

bo

nd

s (

bo

nd

s n

m-2)

Ratio of Si-O to Si-C bond strength

Si-O bonds ruptured

moist environment

reducing Si-O bond strength

Matsuda, Oliver, King, Dauskardt, in review

change bond strength

Si-O Si-C

max-flow min-cut theorem (Ford, 1956), Oliver (2010)

generate molecular structure

mathematically count ruptured bonds

Page 24: Outline - IEEEewh.ieee.org/soc/cpmt/presentations/cpmt1301a.pdf · - to avoid RC delay ... Summary Outline . 1/12/2013 8 ... (Novel-Prize Laureate), 1995 . 1/12/2013 9 Mean Field

1/12/2013

24

Plasticity can be conferred to silicon carbide hybrid glasses by incorporating sp3 C chains. – plasticity is tunable. – plasticity improves adhesion at adjacent interfaces.

Silicon carbide hybrid glasses still exhibit low sensitivity to moisture-assisted cracking. – trace Si-O-Si bonds were responsible for this little sensitivity. eliminating Si-Hx bonds can lead to a complete insensitivity.

Key Findings

Motivation

Experimental Methods

Mechanical Properties of Silicon Carbide Hybrid Glasses – role of glass network connectivity and plasticity – toughening interface by adjacent plasticity – moisture-assisted cracking

Silicon carbide hybrid glasses as New Low-k Dielectrics

Summary

Outline

Page 25: Outline - IEEEewh.ieee.org/soc/cpmt/presentations/cpmt1301a.pdf · - to avoid RC delay ... Summary Outline . 1/12/2013 8 ... (Novel-Prize Laureate), 1995 . 1/12/2013 9 Mean Field

1/12/2013

25

Leveraging from fundamental research to develop new low-k Moisture-insensitivity

no Si-O and Si-Hx bonds total insensitivity

sp3 CHx chains toughness

Mechanically stiffer Thermally and chemically stable

process compatible (up to 400oC)

Little bond polarity lower dielectric constant using less porosity

Silicon Carbide Based Low-k Dielectrics

Silicon Carbide Based Low-Dielectrics

• sp3 C chains • no Si-O bonds • no Si-Hx bonds • k=as low as 2.3 without additional porosity • thermal/chemical stability • hydrophobic (>110o) • a low-leakage current < 2 x 10-9 Amp/cm2 at 1MV/cm • high breakdown voltage > 5MV/cm • good adhesion with Cu and SiO2

Matsuda, Interrante, Dauskardt, Dubois, et al., ACS Applied Materials & Interfaces Interrante, Ramanath, et al. Phys Chem Lett 2010, 1, 336 Interrante, Ramanath, Acs Appl Mater Inter 2010, 2, 1275. Interrante et al., Dalton Trans., 39, 9193, 2010

Page 26: Outline - IEEEewh.ieee.org/soc/cpmt/presentations/cpmt1301a.pdf · - to avoid RC delay ... Summary Outline . 1/12/2013 8 ... (Novel-Prize Laureate), 1995 . 1/12/2013 9 Mean Field

1/12/2013

26

process

Silicon Carbide Based Low-Dielectrics

ring opening reaction

disilacyclobutane (DSCB) rings

250-300oC

3500 3000 2500 2000 1500 1000

Ab

so

rba

nce

(a

.u.)

Wavenumber (cm-1)

Cure time: 1h

Si-Hx 400 oC

DSCB ring

C-Hx

Si-CH2-Si

300 oC

200 oC

FTIR

good thermal stability ~ 400 oC

solution process

Matsuda, Interrante, Dauskardt, Dubois, et al., ACS Applied Materials & Interfaces

Excellent Mechanical Properties

2 3 4 5 6 7 8 9 10 110

1

2

3

4

Me

ch

an

ica

l T

ou

gh

ne

ss (

J/m

2)

Mechanical Stiffness (GPa)

Our new low-k

CDO low-k

MSSQ low-k

Matsuda, Interrante, Dauskardt, Dubois, et al., ACS Applied Materials & Interfaces

Young’s modulus, E (GPa)

Fra

ctu

re e

nerg

y, G

c (J m

-2)

Page 27: Outline - IEEEewh.ieee.org/soc/cpmt/presentations/cpmt1301a.pdf · - to avoid RC delay ... Summary Outline . 1/12/2013 8 ... (Novel-Prize Laureate), 1995 . 1/12/2013 9 Mean Field

1/12/2013

27

Sensitivity to Moisture-Assisted Cracking

1.5 2.0 2.5 3.0 3.5 4.010

-10

10-9

10-8

10-7

10-6

10-5

10-4

Cra

ck G

row

th R

ate

, da/d

t (m

s-1)

Crack Driving Force, G (J m-2)

25oC

85%

30%

silica-based low-k

Matsuda, Interrante, Dauskardt, Dubois, et al., ACS Applied Materials & Interfaces

1.5 2.0 2.5 3.0 3.5 4.010

-10

10-9

10-8

10-7

10-6

10-5

10-4

Cra

ck G

row

th R

ate

, da/d

t (m

s-1)

Crack Driving Force, G (J m-2)

25oC

new low-k

20% 70%

85%

30%

silica-based low-k

Silica-based low-k • high sensitivity to moisture-

assisted cracking

Silicon carbide low-k • insensitivity to moisture-

assisted cracking • crack growth is due to

viscoelastic relaxation of sp3 C-C chains

water molecule

crack tip stress

chain slip and disentanglement

Sensitivity to Moisture-Assisted Cracking

Matsuda, Interrante, Dauskardt, Dubois, et al., ACS Applied Materials & Interfaces

Page 28: Outline - IEEEewh.ieee.org/soc/cpmt/presentations/cpmt1301a.pdf · - to avoid RC delay ... Summary Outline . 1/12/2013 8 ... (Novel-Prize Laureate), 1995 . 1/12/2013 9 Mean Field

1/12/2013

28

Important roles of connectivity and plasticity in mechanical properties of silicon carbide hybrid glasses

Summary

Fracture properties/toughening Elastic properties

Toughening interface using adjacent plasticity

Moisture-assisted cracking in silicon carbide hybrid glasses

Summary

Page 29: Outline - IEEEewh.ieee.org/soc/cpmt/presentations/cpmt1301a.pdf · - to avoid RC delay ... Summary Outline . 1/12/2013 8 ... (Novel-Prize Laureate), 1995 . 1/12/2013 9 Mean Field

1/12/2013

29

New material development leveraging from fundamental research.

Summary

2 3 4 5 6 7 8 9 10 110

1

2

3

4

Mech

an

ica

l T

oug

hn

ess (

J/m

2)

Mechanical Stiffness (GPa)

Advisor: Prof. Reinhold H. Dauskardt

Collaborators: – Drs. Sean King, Jessica Xu, Jeff Bielefeld (Intel) – Drs. Geraud Dubois, Theo Frot, Willi Volksen (IBM Almaden) – Prof. Jonathan Stebbins, Dr. Namjun Kim, Ill Ryu (Stanford) – Prof. Leonard Interrante (Rensselaer Polytechnic Institute)

Dauskardt group: – Mark Oliver (Dow Electronic Materials), Taek-Soo Kim (KAIST), Jeff

Yang, Tissa Mirfakhrai, Scott Issacson

Supports – Department of Energy, Semiconductor Research Corporation – Stanford Graduate Fellowship, Heiwa Nakajima Foundation,

Nakagawa/Mitani Fellowship

Acknowledgement


Recommended