+ All Categories
Home > Documents > Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo...

Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo...

Date post: 30-Sep-2020
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
98
Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th June 2011 (Kyoto, 15th June 2011) 1 / 32
Transcript
Page 1: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

Particle Markov Chain Monte Carlo Methods

Arnaud DoucetUniversity of British Columbia, Vancouver, Canada

Kyoto, 15th June 2011

(Kyoto, 15th June 2011) 1 / 32

Page 2: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

General State-Space Models

State-space models also known as Hidden Markov models areubiquitous time series models in ecology, econometrics, engineering,statistics etc.

Let {Xn}n≥1 be a latent/hidden Markov process defined by

X1 ∼ µθ (·) and Xn | (Xn−1 = xn−1) ∼ fθ ( ·| xn−1) .

We only have access to a process {Yn}n≥1 such that, conditionalupon {Xn}n≥1, the observations are statistically independent and

Yn | (Xn = xn) ∼ gθ ( ·| xn) .

θ is an unknown parameter of prior density p (θ) .

(Kyoto, 15th June 2011) 2 / 32

Page 3: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

General State-Space Models

State-space models also known as Hidden Markov models areubiquitous time series models in ecology, econometrics, engineering,statistics etc.

Let {Xn}n≥1 be a latent/hidden Markov process defined by

X1 ∼ µθ (·) and Xn | (Xn−1 = xn−1) ∼ fθ ( ·| xn−1) .

We only have access to a process {Yn}n≥1 such that, conditionalupon {Xn}n≥1, the observations are statistically independent and

Yn | (Xn = xn) ∼ gθ ( ·| xn) .

θ is an unknown parameter of prior density p (θ) .

(Kyoto, 15th June 2011) 2 / 32

Page 4: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

General State-Space Models

State-space models also known as Hidden Markov models areubiquitous time series models in ecology, econometrics, engineering,statistics etc.

Let {Xn}n≥1 be a latent/hidden Markov process defined by

X1 ∼ µθ (·) and Xn | (Xn−1 = xn−1) ∼ fθ ( ·| xn−1) .

We only have access to a process {Yn}n≥1 such that, conditionalupon {Xn}n≥1, the observations are statistically independent and

Yn | (Xn = xn) ∼ gθ ( ·| xn) .

θ is an unknown parameter of prior density p (θ) .

(Kyoto, 15th June 2011) 2 / 32

Page 5: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

General State-Space Models

State-space models also known as Hidden Markov models areubiquitous time series models in ecology, econometrics, engineering,statistics etc.

Let {Xn}n≥1 be a latent/hidden Markov process defined by

X1 ∼ µθ (·) and Xn | (Xn−1 = xn−1) ∼ fθ ( ·| xn−1) .

We only have access to a process {Yn}n≥1 such that, conditionalupon {Xn}n≥1, the observations are statistically independent and

Yn | (Xn = xn) ∼ gθ ( ·| xn) .

θ is an unknown parameter of prior density p (θ) .

(Kyoto, 15th June 2011) 2 / 32

Page 6: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

Examples of State-Space Models

Canonical univariate SV model (Ghysels et al., 1996)

Xn = α+ φ (Xn−1 − α) + σVn,

Yn = exp (Xn/2)Wn,

where X1 ∼ N(α, σ2/

(1− φ2

)), Vn

i.i.d.∼ N (0, 1) andWm

i.i.d.∼ N (0, 1) and θ = (α, φ, σ).

Wishart processes for multivariate SV (Gourieroux et al., 2009)

Xmn = MXmn−1 + V

mn , V

mn

i.i.d.∼ N (0,Ξ) , m = 1, ...,KΣn = ∑K

m=1 Xmn (Xmn )

T ,Yn |Σn ∼ N (0,Σn) .

where θ = (M,Ξ).

(Kyoto, 15th June 2011) 3 / 32

Page 7: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

Examples of State-Space Models

Canonical univariate SV model (Ghysels et al., 1996)

Xn = α+ φ (Xn−1 − α) + σVn,

Yn = exp (Xn/2)Wn,

where X1 ∼ N(α, σ2/

(1− φ2

)), Vn

i.i.d.∼ N (0, 1) andWm

i.i.d.∼ N (0, 1) and θ = (α, φ, σ).

Wishart processes for multivariate SV (Gourieroux et al., 2009)

Xmn = MXmn−1 + V

mn , V

mn

i.i.d.∼ N (0,Ξ) , m = 1, ...,KΣn = ∑K

m=1 Xmn (Xmn )

T ,Yn |Σn ∼ N (0,Σn) .

where θ = (M,Ξ).

(Kyoto, 15th June 2011) 3 / 32

Page 8: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

Examples of State-Space Models

U.S./U.K. exchange rate model (Engle & Kim, 1999). Log exchangerate values Yn are modeled through

Yn = αn + ηn,

αn = αn−1 + σαVn,1,

ηn = a1ηn−1 + a2ηn−2 + ση,ZnVn,2

where Vn,1i.i.d.∼ N (0, 1) , Vn,2 i.i.d.∼ N (0, 1) and Zn ∈ {1, 2, 3, 4} is an

unobserved Markov chain of unknown transition matrix.

This can be reformulated as a state-space by selectingXn =

[αn ηn ηn−1 Zn

]T and θ = (a1, a2, σα, σ1:4,P) .

(Kyoto, 15th June 2011) 4 / 32

Page 9: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

Examples of State-Space Models

U.S./U.K. exchange rate model (Engle & Kim, 1999). Log exchangerate values Yn are modeled through

Yn = αn + ηn,

αn = αn−1 + σαVn,1,

ηn = a1ηn−1 + a2ηn−2 + ση,ZnVn,2

where Vn,1i.i.d.∼ N (0, 1) , Vn,2 i.i.d.∼ N (0, 1) and Zn ∈ {1, 2, 3, 4} is an

unobserved Markov chain of unknown transition matrix.

This can be reformulated as a state-space by selectingXn =

[αn ηn ηn−1 Zn

]T and θ = (a1, a2, σα, σ1:4,P) .

(Kyoto, 15th June 2011) 4 / 32

Page 10: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

Other Applications

Macroeconomics: dynamic generalized stochastic equilibrium (Flury& Shephard, Econometrics Review, 2011; Smith, J. Econometrics,2012).

Econometrics: stochastic volatility models, nonlinear term structures(Li, JBES, 2011; Giordani, Kohn & Pitt, JCGS, 2011; Andreasen2011)

Epidemiology: disease dynamic models (Ionides et al., JASA, 2011).Ecology: population dynamic (Thomas et al., 2009; Peters et al.,2011).

Environmentrics: Phytoplankton-Zooplankton model (Parslow et al.,2009), Paleoclimate reconstruction (Rougier, 2010).

Biochemical Systems: stochastic kinetic models (Wilkinson &Golightly, 2010).

(Kyoto, 15th June 2011) 5 / 32

Page 11: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

Other Applications

Macroeconomics: dynamic generalized stochastic equilibrium (Flury& Shephard, Econometrics Review, 2011; Smith, J. Econometrics,2012).

Econometrics: stochastic volatility models, nonlinear term structures(Li, JBES, 2011; Giordani, Kohn & Pitt, JCGS, 2011; Andreasen2011)

Epidemiology: disease dynamic models (Ionides et al., JASA, 2011).Ecology: population dynamic (Thomas et al., 2009; Peters et al.,2011).

Environmentrics: Phytoplankton-Zooplankton model (Parslow et al.,2009), Paleoclimate reconstruction (Rougier, 2010).

Biochemical Systems: stochastic kinetic models (Wilkinson &Golightly, 2010).

(Kyoto, 15th June 2011) 5 / 32

Page 12: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

Other Applications

Macroeconomics: dynamic generalized stochastic equilibrium (Flury& Shephard, Econometrics Review, 2011; Smith, J. Econometrics,2012).

Econometrics: stochastic volatility models, nonlinear term structures(Li, JBES, 2011; Giordani, Kohn & Pitt, JCGS, 2011; Andreasen2011)

Epidemiology: disease dynamic models (Ionides et al., JASA, 2011).

Ecology: population dynamic (Thomas et al., 2009; Peters et al.,2011).

Environmentrics: Phytoplankton-Zooplankton model (Parslow et al.,2009), Paleoclimate reconstruction (Rougier, 2010).

Biochemical Systems: stochastic kinetic models (Wilkinson &Golightly, 2010).

(Kyoto, 15th June 2011) 5 / 32

Page 13: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

Other Applications

Macroeconomics: dynamic generalized stochastic equilibrium (Flury& Shephard, Econometrics Review, 2011; Smith, J. Econometrics,2012).

Econometrics: stochastic volatility models, nonlinear term structures(Li, JBES, 2011; Giordani, Kohn & Pitt, JCGS, 2011; Andreasen2011)

Epidemiology: disease dynamic models (Ionides et al., JASA, 2011).Ecology: population dynamic (Thomas et al., 2009; Peters et al.,2011).

Environmentrics: Phytoplankton-Zooplankton model (Parslow et al.,2009), Paleoclimate reconstruction (Rougier, 2010).

Biochemical Systems: stochastic kinetic models (Wilkinson &Golightly, 2010).

(Kyoto, 15th June 2011) 5 / 32

Page 14: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

Other Applications

Macroeconomics: dynamic generalized stochastic equilibrium (Flury& Shephard, Econometrics Review, 2011; Smith, J. Econometrics,2012).

Econometrics: stochastic volatility models, nonlinear term structures(Li, JBES, 2011; Giordani, Kohn & Pitt, JCGS, 2011; Andreasen2011)

Epidemiology: disease dynamic models (Ionides et al., JASA, 2011).Ecology: population dynamic (Thomas et al., 2009; Peters et al.,2011).

Environmentrics: Phytoplankton-Zooplankton model (Parslow et al.,2009), Paleoclimate reconstruction (Rougier, 2010).

Biochemical Systems: stochastic kinetic models (Wilkinson &Golightly, 2010).

(Kyoto, 15th June 2011) 5 / 32

Page 15: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

Other Applications

Macroeconomics: dynamic generalized stochastic equilibrium (Flury& Shephard, Econometrics Review, 2011; Smith, J. Econometrics,2012).

Econometrics: stochastic volatility models, nonlinear term structures(Li, JBES, 2011; Giordani, Kohn & Pitt, JCGS, 2011; Andreasen2011)

Epidemiology: disease dynamic models (Ionides et al., JASA, 2011).Ecology: population dynamic (Thomas et al., 2009; Peters et al.,2011).

Environmentrics: Phytoplankton-Zooplankton model (Parslow et al.,2009), Paleoclimate reconstruction (Rougier, 2010).

Biochemical Systems: stochastic kinetic models (Wilkinson &Golightly, 2010).

(Kyoto, 15th June 2011) 5 / 32

Page 16: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

Bayesian Inference in General State-Space Models

Given a collection of observations y1:T := (y1, ..., yT ), we areinterested in carrying out inference about θ and X1:T := (X1, ...,XT ) .

Inference relies on the posterior density

p ( θ, x1:T | y1:T ) = p ( θ| y1:T ) pθ (x1:T | y1:T )

∝ p (θ, x1:T , y1:T )

where

p (θ, x1:T , y1:T ) ∝ p (θ) µθ (x1)T

∏n=2

fθ (xn | xn−1)T

∏n=1

gθ (yn | xn) .

No closed-form expression for p ( θ, x1:T | y1:T ), numericalapproximations are required.

(Kyoto, 15th June 2011) 6 / 32

Page 17: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

Bayesian Inference in General State-Space Models

Given a collection of observations y1:T := (y1, ..., yT ), we areinterested in carrying out inference about θ and X1:T := (X1, ...,XT ) .Inference relies on the posterior density

p ( θ, x1:T | y1:T ) = p ( θ| y1:T ) pθ (x1:T | y1:T )

∝ p (θ, x1:T , y1:T )

where

p (θ, x1:T , y1:T ) ∝ p (θ) µθ (x1)T

∏n=2

fθ (xn | xn−1)T

∏n=1

gθ (yn | xn) .

No closed-form expression for p ( θ, x1:T | y1:T ), numericalapproximations are required.

(Kyoto, 15th June 2011) 6 / 32

Page 18: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

Bayesian Inference in General State-Space Models

Given a collection of observations y1:T := (y1, ..., yT ), we areinterested in carrying out inference about θ and X1:T := (X1, ...,XT ) .Inference relies on the posterior density

p ( θ, x1:T | y1:T ) = p ( θ| y1:T ) pθ (x1:T | y1:T )

∝ p (θ, x1:T , y1:T )

where

p (θ, x1:T , y1:T ) ∝ p (θ) µθ (x1)T

∏n=2

fθ (xn | xn−1)T

∏n=1

gθ (yn | xn) .

No closed-form expression for p ( θ, x1:T | y1:T ), numericalapproximations are required.

(Kyoto, 15th June 2011) 6 / 32

Page 19: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

Common MCMC Approaches and Limitations

MCMC Idea: Simulate an ergodic Markov chain {θ (i) ,X1:T (i)}i≥0of invariant distribution p ( θ, x1:T | y1:T )... infinite number ofpossibilities.

Typical strategies consists of updating iteratively X1:T conditionalupon θ then θ conditional upon X1:T .

To update X1:T conditional upon θ, use MCMC kernels updatingsubblocks according to pθ (xn:n+K−1| yn:n+K−1, xn−1, xn+K ).

Standard MCMC algorithms are ineffi cient if θ and X1:T are stronglycorrelated.

Strategy impossible to implement when it is only possible to samplefrom the prior but impossible to evaluate it pointwise.

(Kyoto, 15th June 2011) 7 / 32

Page 20: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

Common MCMC Approaches and Limitations

MCMC Idea: Simulate an ergodic Markov chain {θ (i) ,X1:T (i)}i≥0of invariant distribution p ( θ, x1:T | y1:T )... infinite number ofpossibilities.

Typical strategies consists of updating iteratively X1:T conditionalupon θ then θ conditional upon X1:T .

To update X1:T conditional upon θ, use MCMC kernels updatingsubblocks according to pθ (xn:n+K−1| yn:n+K−1, xn−1, xn+K ).

Standard MCMC algorithms are ineffi cient if θ and X1:T are stronglycorrelated.

Strategy impossible to implement when it is only possible to samplefrom the prior but impossible to evaluate it pointwise.

(Kyoto, 15th June 2011) 7 / 32

Page 21: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

Common MCMC Approaches and Limitations

MCMC Idea: Simulate an ergodic Markov chain {θ (i) ,X1:T (i)}i≥0of invariant distribution p ( θ, x1:T | y1:T )... infinite number ofpossibilities.

Typical strategies consists of updating iteratively X1:T conditionalupon θ then θ conditional upon X1:T .

To update X1:T conditional upon θ, use MCMC kernels updatingsubblocks according to pθ (xn:n+K−1| yn:n+K−1, xn−1, xn+K ).

Standard MCMC algorithms are ineffi cient if θ and X1:T are stronglycorrelated.

Strategy impossible to implement when it is only possible to samplefrom the prior but impossible to evaluate it pointwise.

(Kyoto, 15th June 2011) 7 / 32

Page 22: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

Common MCMC Approaches and Limitations

MCMC Idea: Simulate an ergodic Markov chain {θ (i) ,X1:T (i)}i≥0of invariant distribution p ( θ, x1:T | y1:T )... infinite number ofpossibilities.

Typical strategies consists of updating iteratively X1:T conditionalupon θ then θ conditional upon X1:T .

To update X1:T conditional upon θ, use MCMC kernels updatingsubblocks according to pθ (xn:n+K−1| yn:n+K−1, xn−1, xn+K ).

Standard MCMC algorithms are ineffi cient if θ and X1:T are stronglycorrelated.

Strategy impossible to implement when it is only possible to samplefrom the prior but impossible to evaluate it pointwise.

(Kyoto, 15th June 2011) 7 / 32

Page 23: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

Common MCMC Approaches and Limitations

MCMC Idea: Simulate an ergodic Markov chain {θ (i) ,X1:T (i)}i≥0of invariant distribution p ( θ, x1:T | y1:T )... infinite number ofpossibilities.

Typical strategies consists of updating iteratively X1:T conditionalupon θ then θ conditional upon X1:T .

To update X1:T conditional upon θ, use MCMC kernels updatingsubblocks according to pθ (xn:n+K−1| yn:n+K−1, xn−1, xn+K ).

Standard MCMC algorithms are ineffi cient if θ and X1:T are stronglycorrelated.

Strategy impossible to implement when it is only possible to samplefrom the prior but impossible to evaluate it pointwise.

(Kyoto, 15th June 2011) 7 / 32

Page 24: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

Metropolis-Hastings (MH) Sampling

To bypass these problems, we want to update jointly θ and X1:T .

Assume that the current state of our Markov chain is (θ, x1:T ), wepropose to update simultaneously the parameter and the states usinga proposal

q ( (θ∗, x∗1:T )| (θ, x1:T )) = q ( θ∗| θ) qθ∗ (x∗1:T | y1:T ) .

The proposal (θ∗, x∗1:T ) is accepted with MH acceptance probability

1∧ p ( θ∗, x∗1:T | y1:T )

p ( θ, x1:T | y1:T )

q ( (x1:T , θ)| (x∗1:T , θ∗))

q((x∗1:T , θ

∗)∣∣ (x1:T , θ)

)Problem: Designing a proposal qθ∗ (x

∗1:T | y1:T ) such that the

acceptance probability is not extremely small is very diffi cult.

(Kyoto, 15th June 2011) 8 / 32

Page 25: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

Metropolis-Hastings (MH) Sampling

To bypass these problems, we want to update jointly θ and X1:T .

Assume that the current state of our Markov chain is (θ, x1:T ), wepropose to update simultaneously the parameter and the states usinga proposal

q ( (θ∗, x∗1:T )| (θ, x1:T )) = q ( θ∗| θ) qθ∗ (x∗1:T | y1:T ) .

The proposal (θ∗, x∗1:T ) is accepted with MH acceptance probability

1∧ p ( θ∗, x∗1:T | y1:T )

p ( θ, x1:T | y1:T )

q ( (x1:T , θ)| (x∗1:T , θ∗))

q((x∗1:T , θ

∗)∣∣ (x1:T , θ)

)Problem: Designing a proposal qθ∗ (x

∗1:T | y1:T ) such that the

acceptance probability is not extremely small is very diffi cult.

(Kyoto, 15th June 2011) 8 / 32

Page 26: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

Metropolis-Hastings (MH) Sampling

To bypass these problems, we want to update jointly θ and X1:T .

Assume that the current state of our Markov chain is (θ, x1:T ), wepropose to update simultaneously the parameter and the states usinga proposal

q ( (θ∗, x∗1:T )| (θ, x1:T )) = q ( θ∗| θ) qθ∗ (x∗1:T | y1:T ) .

The proposal (θ∗, x∗1:T ) is accepted with MH acceptance probability

1∧ p ( θ∗, x∗1:T | y1:T )

p ( θ, x1:T | y1:T )

q ( (x1:T , θ)| (x∗1:T , θ∗))

q((x∗1:T , θ

∗)∣∣ (x1:T , θ)

)

Problem: Designing a proposal qθ∗ (x∗1:T | y1:T ) such that the

acceptance probability is not extremely small is very diffi cult.

(Kyoto, 15th June 2011) 8 / 32

Page 27: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

Metropolis-Hastings (MH) Sampling

To bypass these problems, we want to update jointly θ and X1:T .

Assume that the current state of our Markov chain is (θ, x1:T ), wepropose to update simultaneously the parameter and the states usinga proposal

q ( (θ∗, x∗1:T )| (θ, x1:T )) = q ( θ∗| θ) qθ∗ (x∗1:T | y1:T ) .

The proposal (θ∗, x∗1:T ) is accepted with MH acceptance probability

1∧ p ( θ∗, x∗1:T | y1:T )

p ( θ, x1:T | y1:T )

q ( (x1:T , θ)| (x∗1:T , θ∗))

q((x∗1:T , θ

∗)∣∣ (x1:T , θ)

)Problem: Designing a proposal qθ∗ (x

∗1:T | y1:T ) such that the

acceptance probability is not extremely small is very diffi cult.

(Kyoto, 15th June 2011) 8 / 32

Page 28: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

“Idealized”Marginal MH Sampler

Consider the following so-called marginal Metropolis-Hastings (MH)algorithm which uses as a proposal

q ( (x∗1:T , θ∗)| (x1:T , θ)) = q ( θ∗| θ) pθ∗ (x

∗1:T | y1:T ) .

The MH acceptance probability is

1∧ p ( θ∗, x∗1:T | y1:T )

p ( θ, x1:T | y1:T )

q ( (x1:T , θ)| (x∗1:T , θ∗))

q((x∗1:T , θ

∗)∣∣ (x1:T , θ)

)= 1∧ pθ∗ (y1:T ) p (θ

∗)

pθ (y1:T ) p (θ)q ( θ| θ∗)q ( θ∗| θ)

In this MH algorithm, X1:T has been essentially integrated out.

(Kyoto, 15th June 2011) 9 / 32

Page 29: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

“Idealized”Marginal MH Sampler

Consider the following so-called marginal Metropolis-Hastings (MH)algorithm which uses as a proposal

q ( (x∗1:T , θ∗)| (x1:T , θ)) = q ( θ∗| θ) pθ∗ (x

∗1:T | y1:T ) .

The MH acceptance probability is

1∧ p ( θ∗, x∗1:T | y1:T )

p ( θ, x1:T | y1:T )

q ( (x1:T , θ)| (x∗1:T , θ∗))

q((x∗1:T , θ

∗)∣∣ (x1:T , θ)

)= 1∧ pθ∗ (y1:T ) p (θ

∗)

pθ (y1:T ) p (θ)q ( θ| θ∗)q ( θ∗| θ)

In this MH algorithm, X1:T has been essentially integrated out.

(Kyoto, 15th June 2011) 9 / 32

Page 30: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

“Idealized”Marginal MH Sampler

Consider the following so-called marginal Metropolis-Hastings (MH)algorithm which uses as a proposal

q ( (x∗1:T , θ∗)| (x1:T , θ)) = q ( θ∗| θ) pθ∗ (x

∗1:T | y1:T ) .

The MH acceptance probability is

1∧ p ( θ∗, x∗1:T | y1:T )

p ( θ, x1:T | y1:T )

q ( (x1:T , θ)| (x∗1:T , θ∗))

q((x∗1:T , θ

∗)∣∣ (x1:T , θ)

)= 1∧ pθ∗ (y1:T ) p (θ

∗)

pθ (y1:T ) p (θ)q ( θ| θ∗)q ( θ∗| θ)

In this MH algorithm, X1:T has been essentially integrated out.

(Kyoto, 15th June 2011) 9 / 32

Page 31: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

Implementation Issues

Problem 1: We do not know pθ (y1:T ) =∫pθ (x1:T , y1:T ) dx1:T

analytically.

Problem 2: We do not know how to sample from pθ (x1:T | y1:T ) .

“Idea”: Use SMC approximations of pθ (x1:T | y1:T ) and pθ (y1:T ).

(Kyoto, 15th June 2011) 10 / 32

Page 32: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

Implementation Issues

Problem 1: We do not know pθ (y1:T ) =∫pθ (x1:T , y1:T ) dx1:T

analytically.

Problem 2: We do not know how to sample from pθ (x1:T | y1:T ) .

“Idea”: Use SMC approximations of pθ (x1:T | y1:T ) and pθ (y1:T ).

(Kyoto, 15th June 2011) 10 / 32

Page 33: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

Implementation Issues

Problem 1: We do not know pθ (y1:T ) =∫pθ (x1:T , y1:T ) dx1:T

analytically.

Problem 2: We do not know how to sample from pθ (x1:T | y1:T ) .

“Idea”: Use SMC approximations of pθ (x1:T | y1:T ) and pθ (y1:T ).

(Kyoto, 15th June 2011) 10 / 32

Page 34: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

Sequential Monte Carlo aka Particle Filters

Given θ, SMC methods provide approximations of pθ (x1:T | y1:T ) andpθ (y1:T ).

To sample from pθ (x1:T | y1:T ), SMC proceed sequentially by firstapproximating pθ (x1| y1) and pθ (y1) at time 1 then pθ (x1:2| y1:2)and pθ (y1:2) at time 2 and so on.

SMC methods approximate the distributions of interest via a cloud ofN particles which are propagated using Importance Sampling andResampling steps.

(Kyoto, 15th June 2011) 11 / 32

Page 35: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

Sequential Monte Carlo aka Particle Filters

Given θ, SMC methods provide approximations of pθ (x1:T | y1:T ) andpθ (y1:T ).

To sample from pθ (x1:T | y1:T ), SMC proceed sequentially by firstapproximating pθ (x1| y1) and pθ (y1) at time 1 then pθ (x1:2| y1:2)and pθ (y1:2) at time 2 and so on.

SMC methods approximate the distributions of interest via a cloud ofN particles which are propagated using Importance Sampling andResampling steps.

(Kyoto, 15th June 2011) 11 / 32

Page 36: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

Sequential Monte Carlo aka Particle Filters

Given θ, SMC methods provide approximations of pθ (x1:T | y1:T ) andpθ (y1:T ).

To sample from pθ (x1:T | y1:T ), SMC proceed sequentially by firstapproximating pθ (x1| y1) and pθ (y1) at time 1 then pθ (x1:2| y1:2)and pθ (y1:2) at time 2 and so on.

SMC methods approximate the distributions of interest via a cloud ofN particles which are propagated using Importance Sampling andResampling steps.

(Kyoto, 15th June 2011) 11 / 32

Page 37: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

Importance Sampling

Assume you have at time n− 1

p̂θ (x1:n−1| y1:n−1) =1N

N

∑k=1

δX k1:n−1(x1:n−1) .

By sampling Xkn ∼ fθ

(·|X kn−1

)and setting X

k1:n =

(X k1:n−1,X

kn

)then

p̂θ (x1:n | y1:n−1) =1N

N

∑k=1

δXk1:n(x1:n) .

Our target at time n is

pθ (x1:n | y1:n) =gθ (yn | xn) pθ (x1:n | y1:n−1)∫gθ (yn | xn) pθ (x1:n | y1:n−1) dx1:n

so by substituting p̂θ (x1:n | y1:n−1) to pθ (x1:n | y1:n−1) we obtain

pθ (x1:n | y1:n) =N

∑k=1

W kn δ

Xk1:n(x1:n) , W k

n ∝ gθ

(yn |X

k1:n

).

(Kyoto, 15th June 2011) 12 / 32

Page 38: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

Importance Sampling

Assume you have at time n− 1

p̂θ (x1:n−1| y1:n−1) =1N

N

∑k=1

δX k1:n−1(x1:n−1) .

By sampling Xkn ∼ fθ

(·|X kn−1

)and setting X

k1:n =

(X k1:n−1,X

kn

)then

p̂θ (x1:n | y1:n−1) =1N

N

∑k=1

δXk1:n(x1:n) .

Our target at time n is

pθ (x1:n | y1:n) =gθ (yn | xn) pθ (x1:n | y1:n−1)∫gθ (yn | xn) pθ (x1:n | y1:n−1) dx1:n

so by substituting p̂θ (x1:n | y1:n−1) to pθ (x1:n | y1:n−1) we obtain

pθ (x1:n | y1:n) =N

∑k=1

W kn δ

Xk1:n(x1:n) , W k

n ∝ gθ

(yn |X

k1:n

).

(Kyoto, 15th June 2011) 12 / 32

Page 39: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

Importance Sampling

Assume you have at time n− 1

p̂θ (x1:n−1| y1:n−1) =1N

N

∑k=1

δX k1:n−1(x1:n−1) .

By sampling Xkn ∼ fθ

(·|X kn−1

)and setting X

k1:n =

(X k1:n−1,X

kn

)then

p̂θ (x1:n | y1:n−1) =1N

N

∑k=1

δXk1:n(x1:n) .

Our target at time n is

pθ (x1:n | y1:n) =gθ (yn | xn) pθ (x1:n | y1:n−1)∫gθ (yn | xn) pθ (x1:n | y1:n−1) dx1:n

so by substituting p̂θ (x1:n | y1:n−1) to pθ (x1:n | y1:n−1) we obtain

pθ (x1:n | y1:n) =N

∑k=1

W kn δ

Xk1:n(x1:n) , W k

n ∝ gθ

(yn |X

k1:n

).

(Kyoto, 15th June 2011) 12 / 32

Page 40: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

Resampling

We have a “weighted”approximation pθ (x1:n | y1:n) of pθ (x1:n | y1:n)

pθ (x1:n | y1:n) =N

∑k=1

W kn δ

Xk1:n(x1:n) .

To obtain N samples X k1:n approximately distributed according topθ (x1:n | y1:n), we just resample

X k1:n ∼ pθ ( ·| y1:n)

to obtain

p̂θ (x1:n | y1:n) =1N

N

∑k=1

δX k1:n(x1:n) .

Particles with high weights are copied multiples times, particles withlow weights die.

(Kyoto, 15th June 2011) 13 / 32

Page 41: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

Resampling

We have a “weighted”approximation pθ (x1:n | y1:n) of pθ (x1:n | y1:n)

pθ (x1:n | y1:n) =N

∑k=1

W kn δ

Xk1:n(x1:n) .

To obtain N samples X k1:n approximately distributed according topθ (x1:n | y1:n), we just resample

X k1:n ∼ pθ ( ·| y1:n)

to obtain

p̂θ (x1:n | y1:n) =1N

N

∑k=1

δX k1:n(x1:n) .

Particles with high weights are copied multiples times, particles withlow weights die.

(Kyoto, 15th June 2011) 13 / 32

Page 42: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

Resampling

We have a “weighted”approximation pθ (x1:n | y1:n) of pθ (x1:n | y1:n)

pθ (x1:n | y1:n) =N

∑k=1

W kn δ

Xk1:n(x1:n) .

To obtain N samples X k1:n approximately distributed according topθ (x1:n | y1:n), we just resample

X k1:n ∼ pθ ( ·| y1:n)

to obtain

p̂θ (x1:n | y1:n) =1N

N

∑k=1

δX k1:n(x1:n) .

Particles with high weights are copied multiples times, particles withlow weights die.

(Kyoto, 15th June 2011) 13 / 32

Page 43: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

Bootstrap Filter (Gordon, Salmond & Smith, 1993)

At time n = 1

Sample Xk1 ∼ µθ (·) then

pθ (x1| y1) =N

∑k=1

W k1 δ

Xk1(x1) , W k

1 ∝ gθ

(y1|X

k1

).

Resample X k1 ∼ pθ (x1| y1) to obtain p̂θ (x1| y1) = 1N ∑N

i=1 δX k1 (x1).

At time n ≥ 2

Sample Xkn ∼ fθ

(·|X kn−1

), set X

k1:n =

(X k1:n−1,X

kn

)and

pθ (x1:n | y1:n) =N

∑k=1

W kn δ

Xk1:n(x1:n) , W k

n ∝ gθ

(yn |X

kn

).

Resample X k1:n ∼ pθ (x1:n | y1:n) to obtainp̂θ (x1:n | y1:n) =

1N ∑N

i=1 δX k1:n(x1:n).

(Kyoto, 15th June 2011) 14 / 32

Page 44: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

Bootstrap Filter (Gordon, Salmond & Smith, 1993)

At time n = 1

Sample Xk1 ∼ µθ (·) then

pθ (x1| y1) =N

∑k=1

W k1 δ

Xk1(x1) , W k

1 ∝ gθ

(y1|X

k1

).

Resample X k1 ∼ pθ (x1| y1) to obtain p̂θ (x1| y1) = 1N ∑N

i=1 δX k1 (x1).

At time n ≥ 2

Sample Xkn ∼ fθ

(·|X kn−1

), set X

k1:n =

(X k1:n−1,X

kn

)and

pθ (x1:n | y1:n) =N

∑k=1

W kn δ

Xk1:n(x1:n) , W k

n ∝ gθ

(yn |X

kn

).

Resample X k1:n ∼ pθ (x1:n | y1:n) to obtainp̂θ (x1:n | y1:n) =

1N ∑N

i=1 δX k1:n(x1:n).

(Kyoto, 15th June 2011) 14 / 32

Page 45: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

Bootstrap Filter (Gordon, Salmond & Smith, 1993)

At time n = 1

Sample Xk1 ∼ µθ (·) then

pθ (x1| y1) =N

∑k=1

W k1 δ

Xk1(x1) , W k

1 ∝ gθ

(y1|X

k1

).

Resample X k1 ∼ pθ (x1| y1) to obtain p̂θ (x1| y1) = 1N ∑N

i=1 δX k1 (x1).

At time n ≥ 2

Sample Xkn ∼ fθ

(·|X kn−1

), set X

k1:n =

(X k1:n−1,X

kn

)and

pθ (x1:n | y1:n) =N

∑k=1

W kn δ

Xk1:n(x1:n) , W k

n ∝ gθ

(yn |X

kn

).

Resample X k1:n ∼ pθ (x1:n | y1:n) to obtainp̂θ (x1:n | y1:n) =

1N ∑N

i=1 δX k1:n(x1:n).

(Kyoto, 15th June 2011) 14 / 32

Page 46: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

Bootstrap Filter (Gordon, Salmond & Smith, 1993)

At time n = 1

Sample Xk1 ∼ µθ (·) then

pθ (x1| y1) =N

∑k=1

W k1 δ

Xk1(x1) , W k

1 ∝ gθ

(y1|X

k1

).

Resample X k1 ∼ pθ (x1| y1) to obtain p̂θ (x1| y1) = 1N ∑N

i=1 δX k1 (x1).

At time n ≥ 2

Sample Xkn ∼ fθ

(·|X kn−1

), set X

k1:n =

(X k1:n−1,X

kn

)and

pθ (x1:n | y1:n) =N

∑k=1

W kn δ

Xk1:n(x1:n) , W k

n ∝ gθ

(yn |X

kn

).

Resample X k1:n ∼ pθ (x1:n | y1:n) to obtainp̂θ (x1:n | y1:n) =

1N ∑N

i=1 δX k1:n(x1:n).

(Kyoto, 15th June 2011) 14 / 32

Page 47: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

Bootstrap Filter (Gordon, Salmond & Smith, 1993)

At time n = 1

Sample Xk1 ∼ µθ (·) then

pθ (x1| y1) =N

∑k=1

W k1 δ

Xk1(x1) , W k

1 ∝ gθ

(y1|X

k1

).

Resample X k1 ∼ pθ (x1| y1) to obtain p̂θ (x1| y1) = 1N ∑N

i=1 δX k1 (x1).

At time n ≥ 2

Sample Xkn ∼ fθ

(·|X kn−1

), set X

k1:n =

(X k1:n−1,X

kn

)and

pθ (x1:n | y1:n) =N

∑k=1

W kn δ

Xk1:n(x1:n) , W k

n ∝ gθ

(yn |X

kn

).

Resample X k1:n ∼ pθ (x1:n | y1:n) to obtainp̂θ (x1:n | y1:n) =

1N ∑N

i=1 δX k1:n(x1:n).

(Kyoto, 15th June 2011) 14 / 32

Page 48: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

SMC Output

At time T , we obtain the following approximation of the posterior ofinterest

p̂θ (x1:T | y1:T ) =1N

N

∑k=1

δX k1:T(dx1:T )

and an approximation of pθ (y1:T ) is given by

p̂θ (y1:T ) = p̂θ (y1)T

∏n=2

p̂θ (yn | y1:n−1) =T

∏n=1

(1N

N

∑k=1

(yn |X kn

)).

These approximations are asymptotically (i.e. N → ∞) consistentunder very weak assumptions.

(Kyoto, 15th June 2011) 15 / 32

Page 49: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

SMC Output

At time T , we obtain the following approximation of the posterior ofinterest

p̂θ (x1:T | y1:T ) =1N

N

∑k=1

δX k1:T(dx1:T )

and an approximation of pθ (y1:T ) is given by

p̂θ (y1:T ) = p̂θ (y1)T

∏n=2

p̂θ (yn | y1:n−1) =T

∏n=1

(1N

N

∑k=1

(yn |X kn

)).

These approximations are asymptotically (i.e. N → ∞) consistentunder very weak assumptions.

(Kyoto, 15th June 2011) 15 / 32

Page 50: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

Some Theoretical Results

Under mixing assumptions (Del Moral, 2004), we have

‖L (X1:T ∈ ·)− pθ ( ·| y1:T )‖tv ≤ CθTN

where X1:T ∼ E [p̂θ ( ·| y1:T )].

Under mixing assumptions (Del Moral et al., 2010) we also have

V [p̂θ (y1:T )]

p2θ (y1:T )≤ Dθ

TN.

Loosely speaking, the performance of SMC only degrade linearly withtime rather than exponentially for naive approaches.

Problem: We cannot compute analytically the particle filter proposalqθ (x1:T | y1:T ) = E [p̂θ (x1:T | y1:T )] as it involves an expectation w.r.tall the variables appearing in the particle algorithm...

(Kyoto, 15th June 2011) 16 / 32

Page 51: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

Some Theoretical Results

Under mixing assumptions (Del Moral, 2004), we have

‖L (X1:T ∈ ·)− pθ ( ·| y1:T )‖tv ≤ CθTN

where X1:T ∼ E [p̂θ ( ·| y1:T )].

Under mixing assumptions (Del Moral et al., 2010) we also have

V [p̂θ (y1:T )]

p2θ (y1:T )≤ Dθ

TN.

Loosely speaking, the performance of SMC only degrade linearly withtime rather than exponentially for naive approaches.

Problem: We cannot compute analytically the particle filter proposalqθ (x1:T | y1:T ) = E [p̂θ (x1:T | y1:T )] as it involves an expectation w.r.tall the variables appearing in the particle algorithm...

(Kyoto, 15th June 2011) 16 / 32

Page 52: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

Some Theoretical Results

Under mixing assumptions (Del Moral, 2004), we have

‖L (X1:T ∈ ·)− pθ ( ·| y1:T )‖tv ≤ CθTN

where X1:T ∼ E [p̂θ ( ·| y1:T )].

Under mixing assumptions (Del Moral et al., 2010) we also have

V [p̂θ (y1:T )]

p2θ (y1:T )≤ Dθ

TN.

Loosely speaking, the performance of SMC only degrade linearly withtime rather than exponentially for naive approaches.

Problem: We cannot compute analytically the particle filter proposalqθ (x1:T | y1:T ) = E [p̂θ (x1:T | y1:T )] as it involves an expectation w.r.tall the variables appearing in the particle algorithm...

(Kyoto, 15th June 2011) 16 / 32

Page 53: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

Some Theoretical Results

Under mixing assumptions (Del Moral, 2004), we have

‖L (X1:T ∈ ·)− pθ ( ·| y1:T )‖tv ≤ CθTN

where X1:T ∼ E [p̂θ ( ·| y1:T )].

Under mixing assumptions (Del Moral et al., 2010) we also have

V [p̂θ (y1:T )]

p2θ (y1:T )≤ Dθ

TN.

Loosely speaking, the performance of SMC only degrade linearly withtime rather than exponentially for naive approaches.

Problem: We cannot compute analytically the particle filter proposalqθ (x1:T | y1:T ) = E [p̂θ (x1:T | y1:T )] as it involves an expectation w.r.tall the variables appearing in the particle algorithm...

(Kyoto, 15th June 2011) 16 / 32

Page 54: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

“Idealized”Marginal MH Sampler

At iteration i

Sample θ∗ ∼ q ( ·| θ (i − 1)).

Sample X ∗1:T ∼ pθ∗ ( ·| y1:T ) .

With probability

1∧ pθ∗ (y1:T ) p (θ∗)

pθ(i−1) (y1:T ) p (θ (i − 1))q ( θ (i − 1)| θ∗)q ( θ∗| θ (i − 1))

set θ (i) = θ∗, X1:T (i) = X ∗1:T otherwise set θ (i) = θ (i − 1),X1:T (i) = X1:T (i − 1) .

(Kyoto, 15th June 2011) 17 / 32

Page 55: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

“Idealized”Marginal MH Sampler

At iteration i

Sample θ∗ ∼ q ( ·| θ (i − 1)).Sample X ∗1:T ∼ pθ∗ ( ·| y1:T ) .

With probability

1∧ pθ∗ (y1:T ) p (θ∗)

pθ(i−1) (y1:T ) p (θ (i − 1))q ( θ (i − 1)| θ∗)q ( θ∗| θ (i − 1))

set θ (i) = θ∗, X1:T (i) = X ∗1:T otherwise set θ (i) = θ (i − 1),X1:T (i) = X1:T (i − 1) .

(Kyoto, 15th June 2011) 17 / 32

Page 56: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

“Idealized”Marginal MH Sampler

At iteration i

Sample θ∗ ∼ q ( ·| θ (i − 1)).Sample X ∗1:T ∼ pθ∗ ( ·| y1:T ) .

With probability

1∧ pθ∗ (y1:T ) p (θ∗)

pθ(i−1) (y1:T ) p (θ (i − 1))q ( θ (i − 1)| θ∗)q ( θ∗| θ (i − 1))

set θ (i) = θ∗, X1:T (i) = X ∗1:T otherwise set θ (i) = θ (i − 1),X1:T (i) = X1:T (i − 1) .

(Kyoto, 15th June 2011) 17 / 32

Page 57: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

Particle Marginal MH Sampler

At iteration i

Sample θ∗ ∼ q ( ·| θ (i − 1)) and run an SMC algorithm to obtainp̂θ∗ (x1:T | y1:T ) and p̂θ∗ (y1:T ).

Sample X ∗1:T ∼ p̂θ∗ ( ·| y1:T ) .

With probability

1∧ p̂θ∗ (y1:T ) p (θ∗)

p̂θ(i−1) (y1:T ) p (θ (i − 1))q ( θ (i − 1)| θ∗)q ( θ∗| θ (i − 1))

set θ (i) = θ∗, X1:T (i) = X ∗1:T otherwise set θ (i) = θ (i − 1),X1:T (i) = X1:T (i − 1) .

(Kyoto, 15th June 2011) 18 / 32

Page 58: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

Particle Marginal MH Sampler

At iteration i

Sample θ∗ ∼ q ( ·| θ (i − 1)) and run an SMC algorithm to obtainp̂θ∗ (x1:T | y1:T ) and p̂θ∗ (y1:T ).

Sample X ∗1:T ∼ p̂θ∗ ( ·| y1:T ) .

With probability

1∧ p̂θ∗ (y1:T ) p (θ∗)

p̂θ(i−1) (y1:T ) p (θ (i − 1))q ( θ (i − 1)| θ∗)q ( θ∗| θ (i − 1))

set θ (i) = θ∗, X1:T (i) = X ∗1:T otherwise set θ (i) = θ (i − 1),X1:T (i) = X1:T (i − 1) .

(Kyoto, 15th June 2011) 18 / 32

Page 59: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

Particle Marginal MH Sampler

At iteration i

Sample θ∗ ∼ q ( ·| θ (i − 1)) and run an SMC algorithm to obtainp̂θ∗ (x1:T | y1:T ) and p̂θ∗ (y1:T ).

Sample X ∗1:T ∼ p̂θ∗ ( ·| y1:T ) .

With probability

1∧ p̂θ∗ (y1:T ) p (θ∗)

p̂θ(i−1) (y1:T ) p (θ (i − 1))q ( θ (i − 1)| θ∗)q ( θ∗| θ (i − 1))

set θ (i) = θ∗, X1:T (i) = X ∗1:T otherwise set θ (i) = θ (i − 1),X1:T (i) = X1:T (i − 1) .

(Kyoto, 15th June 2011) 18 / 32

Page 60: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

Validity of the Particle Marginal MH Sampler

Assume that the ‘idealized’marginal MH sampler is irreducible andaperiodic then, under very weak assumptions, the PMMH samplergenerates a sequence {θ (i) ,X1:T (i)} whose marginal distributions{LN (θ (i) ,X1:T (i) ∈ ·)

}satisfy for any N ≥ 1∥∥∥LN (θ (i) ,X1:T (i) ∈ ·)− p( ·| y1:T )

∥∥∥TV→ 0 as i → ∞ .

Corollary of a more general result: the PMMH sampler is a standardMH sampler of target distribution π̃N and proposal q̃N defined on anextended space associated to all the variables used to generate theproposal.

(Kyoto, 15th June 2011) 19 / 32

Page 61: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

Validity of the Particle Marginal MH Sampler

Assume that the ‘idealized’marginal MH sampler is irreducible andaperiodic then, under very weak assumptions, the PMMH samplergenerates a sequence {θ (i) ,X1:T (i)} whose marginal distributions{LN (θ (i) ,X1:T (i) ∈ ·)

}satisfy for any N ≥ 1∥∥∥LN (θ (i) ,X1:T (i) ∈ ·)− p( ·| y1:T )

∥∥∥TV→ 0 as i → ∞ .

Corollary of a more general result: the PMMH sampler is a standardMH sampler of target distribution π̃N and proposal q̃N defined on anextended space associated to all the variables used to generate theproposal.

(Kyoto, 15th June 2011) 19 / 32

Page 62: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

Explicit Structure of the Target Distribution

For pedagogical reasons, we limit ourselves to the case where T = 1.

The proposal is

q̃N((

θ∗, k∗, x∗1:N1

)∣∣∣ (θ, k , x1:N1

))= q ( θ∗| θ)

N

∏m=1

µθ∗ (x∗m1 ) w k

∗1

The artificial target is

π̃N(

θ, k , x1:N1

)=

p(

θ, xk1∣∣ y1)

N

N

∏m=1;m 6=k

µθ (xm1 )

=1Np (θ) gθ

(y1| xk1

)pθ (y1)

N

∏m=1

µθ (xm1 )

We have indeed

π̃(θ∗, k∗, x∗1:N

1

)q̃N((

θ∗, k∗, x∗1:N1

)∣∣ (θ, k, x1:N1

)) = p (θ∗)q ( θ∗| θ)

1N ∑N

i=1 gθ∗(y1| x∗i1

)pθ (y1)

(Kyoto, 15th June 2011) 20 / 32

Page 63: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

Explicit Structure of the Target Distribution

For pedagogical reasons, we limit ourselves to the case where T = 1.The proposal is

q̃N((

θ∗, k∗, x∗1:N1

)∣∣∣ (θ, k , x1:N1

))= q ( θ∗| θ)

N

∏m=1

µθ∗ (x∗m1 ) w k

∗1

The artificial target is

π̃N(

θ, k , x1:N1

)=

p(

θ, xk1∣∣ y1)

N

N

∏m=1;m 6=k

µθ (xm1 )

=1Np (θ) gθ

(y1| xk1

)pθ (y1)

N

∏m=1

µθ (xm1 )

We have indeed

π̃(θ∗, k∗, x∗1:N

1

)q̃N((

θ∗, k∗, x∗1:N1

)∣∣ (θ, k, x1:N1

)) = p (θ∗)q ( θ∗| θ)

1N ∑N

i=1 gθ∗(y1| x∗i1

)pθ (y1)

(Kyoto, 15th June 2011) 20 / 32

Page 64: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

Explicit Structure of the Target Distribution

For pedagogical reasons, we limit ourselves to the case where T = 1.The proposal is

q̃N((

θ∗, k∗, x∗1:N1

)∣∣∣ (θ, k , x1:N1

))= q ( θ∗| θ)

N

∏m=1

µθ∗ (x∗m1 ) w k

∗1

The artificial target is

π̃N(

θ, k , x1:N1

)=

p(

θ, xk1∣∣ y1)

N

N

∏m=1;m 6=k

µθ (xm1 )

=1Np (θ) gθ

(y1| xk1

)pθ (y1)

N

∏m=1

µθ (xm1 )

We have indeed

π̃(θ∗, k∗, x∗1:N

1

)q̃N((

θ∗, k∗, x∗1:N1

)∣∣ (θ, k, x1:N1

)) = p (θ∗)q ( θ∗| θ)

1N ∑N

i=1 gθ∗(y1| x∗i1

)pθ (y1)

(Kyoto, 15th June 2011) 20 / 32

Page 65: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

Explicit Structure of the Target Distribution

For pedagogical reasons, we limit ourselves to the case where T = 1.The proposal is

q̃N((

θ∗, k∗, x∗1:N1

)∣∣∣ (θ, k , x1:N1

))= q ( θ∗| θ)

N

∏m=1

µθ∗ (x∗m1 ) w k

∗1

The artificial target is

π̃N(

θ, k , x1:N1

)=

p(

θ, xk1∣∣ y1)

N

N

∏m=1;m 6=k

µθ (xm1 )

=1Np (θ) gθ

(y1| xk1

)pθ (y1)

N

∏m=1

µθ (xm1 )

We have indeed

π̃(θ∗, k∗, x∗1:N

1

)q̃N((

θ∗, k∗, x∗1:N1

)∣∣ (θ, k, x1:N1

)) = p (θ∗)q ( θ∗| θ)

1N ∑N

i=1 gθ∗(y1| x∗i1

)pθ (y1)

(Kyoto, 15th June 2011) 20 / 32

Page 66: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

“Idealized”Block Gibbs Sampler

At iteration i

Sample θ (i) ∼ p (·|y1:T ,X1:T (i − 1)).

Sample X1:T (i) ∼ p (·|y1:T , θ (i)).

Naive particle approximation where X1:T (i) ∼ p̂ (·|y1:T , θ (i)) issubstituted to X1:T (i) ∼ p (·|y1:T , θ (i)) is obviously incorrect.

(Kyoto, 15th June 2011) 21 / 32

Page 67: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

“Idealized”Block Gibbs Sampler

At iteration i

Sample θ (i) ∼ p (·|y1:T ,X1:T (i − 1)).Sample X1:T (i) ∼ p (·|y1:T , θ (i)).

Naive particle approximation where X1:T (i) ∼ p̂ (·|y1:T , θ (i)) issubstituted to X1:T (i) ∼ p (·|y1:T , θ (i)) is obviously incorrect.

(Kyoto, 15th June 2011) 21 / 32

Page 68: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

“Idealized”Block Gibbs Sampler

At iteration i

Sample θ (i) ∼ p (·|y1:T ,X1:T (i − 1)).Sample X1:T (i) ∼ p (·|y1:T , θ (i)).

Naive particle approximation where X1:T (i) ∼ p̂ (·|y1:T , θ (i)) issubstituted to X1:T (i) ∼ p (·|y1:T , θ (i)) is obviously incorrect.

(Kyoto, 15th June 2011) 21 / 32

Page 69: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

Particle Gibbs Sampler

A (collapsed) Gibbs sampler to sample from π̃N for T = 1 can beimplemented using

π̃N(

θ, x−k1∣∣∣ k, xk1 ) = p ( θ| y1, xk1

) N

∏m=1;m 6=k

µθ (xm1 ) ,

π̃N(K = k | θ, x1:N

1

)=

(y1| xk1

)∑Ni=1 gθ

(y1| x i1

) .

Note that even for fixed θ, this is a non-standard MCMC update forpθ (x1| y1). This generalizes Baker’s acceptance rule (Baker, 1965).The target and associated Gibbs sampler can be generalized to T > 1.

(Kyoto, 15th June 2011) 22 / 32

Page 70: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

Particle Gibbs Sampler

A (collapsed) Gibbs sampler to sample from π̃N for T = 1 can beimplemented using

π̃N(

θ, x−k1∣∣∣ k, xk1 ) = p ( θ| y1, xk1

) N

∏m=1;m 6=k

µθ (xm1 ) ,

π̃N(K = k | θ, x1:N

1

)=

(y1| xk1

)∑Ni=1 gθ

(y1| x i1

) .Note that even for fixed θ, this is a non-standard MCMC update forpθ (x1| y1). This generalizes Baker’s acceptance rule (Baker, 1965).

The target and associated Gibbs sampler can be generalized to T > 1.

(Kyoto, 15th June 2011) 22 / 32

Page 71: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

Particle Gibbs Sampler

A (collapsed) Gibbs sampler to sample from π̃N for T = 1 can beimplemented using

π̃N(

θ, x−k1∣∣∣ k, xk1 ) = p ( θ| y1, xk1

) N

∏m=1;m 6=k

µθ (xm1 ) ,

π̃N(K = k | θ, x1:N

1

)=

(y1| xk1

)∑Ni=1 gθ

(y1| x i1

) .Note that even for fixed θ, this is a non-standard MCMC update forpθ (x1| y1). This generalizes Baker’s acceptance rule (Baker, 1965).The target and associated Gibbs sampler can be generalized to T > 1.

(Kyoto, 15th June 2011) 22 / 32

Page 72: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

Particle Gibbs Sampler

At iteration i

Sample θ (i) ∼ p (·|y1:T ,X1:T (i − 1)).

Run a conditional SMC algorithm for θ (i) consistent withX1:T (i − 1) and its ancestral lineage.Sample X1:T (i) ∼ p̂ (·|y1:T , θ (i)) from the resulting approximation(hence its ancestral lineage too).

Proposition. Assume that the ‘ideal’Gibbs sampler is irreducible andaperiodic then under very weak assumptions the particle Gibbssampler generates a sequence {θ (i) ,X1:T (i)} such that for anyN ≥ 2

‖L ((θ (i) ,X1:T (i)) ∈ ·)− p( ·| y1:T )‖ → 0 as i → ∞.

(Kyoto, 15th June 2011) 23 / 32

Page 73: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

Particle Gibbs Sampler

At iteration i

Sample θ (i) ∼ p (·|y1:T ,X1:T (i − 1)).Run a conditional SMC algorithm for θ (i) consistent withX1:T (i − 1) and its ancestral lineage.

Sample X1:T (i) ∼ p̂ (·|y1:T , θ (i)) from the resulting approximation(hence its ancestral lineage too).

Proposition. Assume that the ‘ideal’Gibbs sampler is irreducible andaperiodic then under very weak assumptions the particle Gibbssampler generates a sequence {θ (i) ,X1:T (i)} such that for anyN ≥ 2

‖L ((θ (i) ,X1:T (i)) ∈ ·)− p( ·| y1:T )‖ → 0 as i → ∞.

(Kyoto, 15th June 2011) 23 / 32

Page 74: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

Particle Gibbs Sampler

At iteration i

Sample θ (i) ∼ p (·|y1:T ,X1:T (i − 1)).Run a conditional SMC algorithm for θ (i) consistent withX1:T (i − 1) and its ancestral lineage.Sample X1:T (i) ∼ p̂ (·|y1:T , θ (i)) from the resulting approximation(hence its ancestral lineage too).

Proposition. Assume that the ‘ideal’Gibbs sampler is irreducible andaperiodic then under very weak assumptions the particle Gibbssampler generates a sequence {θ (i) ,X1:T (i)} such that for anyN ≥ 2

‖L ((θ (i) ,X1:T (i)) ∈ ·)− p( ·| y1:T )‖ → 0 as i → ∞.

(Kyoto, 15th June 2011) 23 / 32

Page 75: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

Particle Gibbs Sampler

At iteration i

Sample θ (i) ∼ p (·|y1:T ,X1:T (i − 1)).Run a conditional SMC algorithm for θ (i) consistent withX1:T (i − 1) and its ancestral lineage.Sample X1:T (i) ∼ p̂ (·|y1:T , θ (i)) from the resulting approximation(hence its ancestral lineage too).

Proposition. Assume that the ‘ideal’Gibbs sampler is irreducible andaperiodic then under very weak assumptions the particle Gibbssampler generates a sequence {θ (i) ,X1:T (i)} such that for anyN ≥ 2

‖L ((θ (i) ,X1:T (i)) ∈ ·)− p( ·| y1:T )‖ → 0 as i → ∞.

(Kyoto, 15th June 2011) 23 / 32

Page 76: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

Conditional SMC Algorithm

At time 1

For m 6= bk1 , sample Xm1 ∼ µθ (·) and set Wm1 ∝ gθ (y1|Xm1 , ) ,

∑Nm=1W

m1 = 1.

Resample N − 1 times from p̂θ (x1| y1) = ∑Nm=1W

m1 δXm1 (x1) to

obtain{X−bk11

}and set X

bk11 = X b

k11 .

At time n = 2, ...,T

For m 6= bkn , sample Xmn ∼ fθ(·|Xmn−1

), set Xm1:n =

(Xm1:n−1,X

mn

)and Wm

n ∝ gθ (yn |Xmn ) , ∑Nm=1W

mn = 1.

Resample N − 1 times from p̂θ (x1:n | y1:n) = ∑Nm=1W

mn δXm1:n

(x1:n) to

obtain{X−bkn1:n

}and set X

bkn1:n = X

bkn1:n.

At time n = T

Sample X1:T ∼ p̂θ ( ·| y1:T ) .

(Kyoto, 15th June 2011) 24 / 32

Page 77: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

Conditional SMC Algorithm

At time 1

For m 6= bk1 , sample Xm1 ∼ µθ (·) and set Wm1 ∝ gθ (y1|Xm1 , ) ,

∑Nm=1W

m1 = 1.

Resample N − 1 times from p̂θ (x1| y1) = ∑Nm=1W

m1 δXm1 (x1) to

obtain{X−bk11

}and set X

bk11 = X b

k11 .

At time n = 2, ...,T

For m 6= bkn , sample Xmn ∼ fθ(·|Xmn−1

), set Xm1:n =

(Xm1:n−1,X

mn

)and Wm

n ∝ gθ (yn |Xmn ) , ∑Nm=1W

mn = 1.

Resample N − 1 times from p̂θ (x1:n | y1:n) = ∑Nm=1W

mn δXm1:n

(x1:n) to

obtain{X−bkn1:n

}and set X

bkn1:n = X

bkn1:n.

At time n = T

Sample X1:T ∼ p̂θ ( ·| y1:T ) .

(Kyoto, 15th June 2011) 24 / 32

Page 78: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

Conditional SMC Algorithm

At time 1

For m 6= bk1 , sample Xm1 ∼ µθ (·) and set Wm1 ∝ gθ (y1|Xm1 , ) ,

∑Nm=1W

m1 = 1.

Resample N − 1 times from p̂θ (x1| y1) = ∑Nm=1W

m1 δXm1 (x1) to

obtain{X−bk11

}and set X

bk11 = X b

k11 .

At time n = 2, ...,T

For m 6= bkn , sample Xmn ∼ fθ(·|Xmn−1

), set Xm1:n =

(Xm1:n−1,X

mn

)and Wm

n ∝ gθ (yn |Xmn ) , ∑Nm=1W

mn = 1.

Resample N − 1 times from p̂θ (x1:n | y1:n) = ∑Nm=1W

mn δXm1:n

(x1:n) to

obtain{X−bkn1:n

}and set X

bkn1:n = X

bkn1:n.

At time n = T

Sample X1:T ∼ p̂θ ( ·| y1:T ) .

(Kyoto, 15th June 2011) 24 / 32

Page 79: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

Conditional SMC Algorithm

At time 1

For m 6= bk1 , sample Xm1 ∼ µθ (·) and set Wm1 ∝ gθ (y1|Xm1 , ) ,

∑Nm=1W

m1 = 1.

Resample N − 1 times from p̂θ (x1| y1) = ∑Nm=1W

m1 δXm1 (x1) to

obtain{X−bk11

}and set X

bk11 = X b

k11 .

At time n = 2, ...,T

For m 6= bkn , sample Xmn ∼ fθ(·|Xmn−1

), set Xm1:n =

(Xm1:n−1,X

mn

)and Wm

n ∝ gθ (yn |Xmn ) , ∑Nm=1W

mn = 1.

Resample N − 1 times from p̂θ (x1:n | y1:n) = ∑Nm=1W

mn δXm1:n

(x1:n) to

obtain{X−bkn1:n

}and set X

bkn1:n = X

bkn1:n.

At time n = T

Sample X1:T ∼ p̂θ ( ·| y1:T ) .

(Kyoto, 15th June 2011) 24 / 32

Page 80: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

Conditional SMC Algorithm

At time 1

For m 6= bk1 , sample Xm1 ∼ µθ (·) and set Wm1 ∝ gθ (y1|Xm1 , ) ,

∑Nm=1W

m1 = 1.

Resample N − 1 times from p̂θ (x1| y1) = ∑Nm=1W

m1 δXm1 (x1) to

obtain{X−bk11

}and set X

bk11 = X b

k11 .

At time n = 2, ...,T

For m 6= bkn , sample Xmn ∼ fθ(·|Xmn−1

), set Xm1:n =

(Xm1:n−1,X

mn

)and Wm

n ∝ gθ (yn |Xmn ) , ∑Nm=1W

mn = 1.

Resample N − 1 times from p̂θ (x1:n | y1:n) = ∑Nm=1W

mn δXm1:n

(x1:n) to

obtain{X−bkn1:n

}and set X

bkn1:n = X

bkn1:n.

At time n = T

Sample X1:T ∼ p̂θ ( ·| y1:T ) .

(Kyoto, 15th June 2011) 24 / 32

Page 81: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

Conditional SMC Algorithm

At time 1

For m 6= bk1 , sample Xm1 ∼ µθ (·) and set Wm1 ∝ gθ (y1|Xm1 , ) ,

∑Nm=1W

m1 = 1.

Resample N − 1 times from p̂θ (x1| y1) = ∑Nm=1W

m1 δXm1 (x1) to

obtain{X−bk11

}and set X

bk11 = X b

k11 .

At time n = 2, ...,T

For m 6= bkn , sample Xmn ∼ fθ(·|Xmn−1

), set Xm1:n =

(Xm1:n−1,X

mn

)and Wm

n ∝ gθ (yn |Xmn ) , ∑Nm=1W

mn = 1.

Resample N − 1 times from p̂θ (x1:n | y1:n) = ∑Nm=1W

mn δXm1:n

(x1:n) to

obtain{X−bkn1:n

}and set X

bkn1:n = X

bkn1:n.

At time n = T

Sample X1:T ∼ p̂θ ( ·| y1:T ) .

(Kyoto, 15th June 2011) 24 / 32

Page 82: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

Conditional SMC Algorithm

At time 1

For m 6= bk1 , sample Xm1 ∼ µθ (·) and set Wm1 ∝ gθ (y1|Xm1 , ) ,

∑Nm=1W

m1 = 1.

Resample N − 1 times from p̂θ (x1| y1) = ∑Nm=1W

m1 δXm1 (x1) to

obtain{X−bk11

}and set X

bk11 = X b

k11 .

At time n = 2, ...,T

For m 6= bkn , sample Xmn ∼ fθ(·|Xmn−1

), set Xm1:n =

(Xm1:n−1,X

mn

)and Wm

n ∝ gθ (yn |Xmn ) , ∑Nm=1W

mn = 1.

Resample N − 1 times from p̂θ (x1:n | y1:n) = ∑Nm=1W

mn δXm1:n

(x1:n) to

obtain{X−bkn1:n

}and set X

bkn1:n = X

bkn1:n.

At time n = T

Sample X1:T ∼ p̂θ ( ·| y1:T ) .

(Kyoto, 15th June 2011) 24 / 32

Page 83: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

Nonlinear State-Space Model

Consider the following model

Xn =12Xn−1 + 25

Xn−11+ X 2n−1

+ 8 cos 1.2n+ Vn,

Yn =X 2n20+Wn

where Vn ∼ N(0, σ2v

), Wn ∼ N

(0, σ2w

)and X1 ∼ N

(0, 52

).

Use the prior for {Xn} as proposal distribution.For a fixed θ, we evaluate the expected acceptance probability as afunction of N.

(Kyoto, 15th June 2011) 25 / 32

Page 84: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

Nonlinear State-Space Model

Consider the following model

Xn =12Xn−1 + 25

Xn−11+ X 2n−1

+ 8 cos 1.2n+ Vn,

Yn =X 2n20+Wn

where Vn ∼ N(0, σ2v

), Wn ∼ N

(0, σ2w

)and X1 ∼ N

(0, 52

).

Use the prior for {Xn} as proposal distribution.

For a fixed θ, we evaluate the expected acceptance probability as afunction of N.

(Kyoto, 15th June 2011) 25 / 32

Page 85: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

Nonlinear State-Space Model

Consider the following model

Xn =12Xn−1 + 25

Xn−11+ X 2n−1

+ 8 cos 1.2n+ Vn,

Yn =X 2n20+Wn

where Vn ∼ N(0, σ2v

), Wn ∼ N

(0, σ2w

)and X1 ∼ N

(0, 52

).

Use the prior for {Xn} as proposal distribution.For a fixed θ, we evaluate the expected acceptance probability as afunction of N.

(Kyoto, 15th June 2011) 25 / 32

Page 86: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

Average Acceptance Probability

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  200  400  600  800  1000  1200  1400  1600  1800  2000

Acce

ptan

ce R

ate

Number of Particles

T= 10T= 25T= 50T=100

Average acceptance probability when σ2v = σ2w = 10(Kyoto, 15th June 2011) 26 / 32

Page 87: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

Average Acceptance Probability

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  200  400  600  800  1000  1200  1400  1600  1800  2000

Acc

epta

nce 

Rat

e

Number of Particles

T= 10T= 25T= 50T=100

Average acceptance probability when σ2v = 10, σ2w = 1

(Kyoto, 15th June 2011) 27 / 32

Page 88: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

Inference for Stochastic Kinetic Models

Two species X 1t (prey) and X2t (predator)

Pr(X 1t+dt=x

1t+1,X

2t+dt=x

2t

∣∣ x1t , x2t ) = α x1t dt + o (dt) ,Pr(X 1t+dt=x

1t−1,X 2t+dt=x2t+1

∣∣ x1t , x2t ) = β x1t x2t dt + o (dt) ,

Pr(X 1t+dt=x

1t ,X

2t+dt=x

2t−1

∣∣ x1t , x2t ) = γ x2t dt + o (dt) ,

observed at discrete times

Yn = X 1n∆ +Wn with Wni.i.d.∼ N

(0, σ2

).

We are interested in the kinetic rate constants θ = (α, β,γ) a prioridistributed as (Boys et al., 2008; Kunsch, 2011)

α ∼ G(1, 10), β ∼ G(1, 0.25), γ ∼ G(1, 7.5).

MCMC methods require reversible jumps, Particle MCMC requiresonly forward simulation.

(Kyoto, 15th June 2011) 28 / 32

Page 89: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

Inference for Stochastic Kinetic Models

Two species X 1t (prey) and X2t (predator)

Pr(X 1t+dt=x

1t+1,X

2t+dt=x

2t

∣∣ x1t , x2t ) = α x1t dt + o (dt) ,Pr(X 1t+dt=x

1t−1,X 2t+dt=x2t+1

∣∣ x1t , x2t ) = β x1t x2t dt + o (dt) ,

Pr(X 1t+dt=x

1t ,X

2t+dt=x

2t−1

∣∣ x1t , x2t ) = γ x2t dt + o (dt) ,

observed at discrete times

Yn = X 1n∆ +Wn with Wni.i.d.∼ N

(0, σ2

).

We are interested in the kinetic rate constants θ = (α, β,γ) a prioridistributed as (Boys et al., 2008; Kunsch, 2011)

α ∼ G(1, 10), β ∼ G(1, 0.25), γ ∼ G(1, 7.5).

MCMC methods require reversible jumps, Particle MCMC requiresonly forward simulation.

(Kyoto, 15th June 2011) 28 / 32

Page 90: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

Inference for Stochastic Kinetic Models

Two species X 1t (prey) and X2t (predator)

Pr(X 1t+dt=x

1t+1,X

2t+dt=x

2t

∣∣ x1t , x2t ) = α x1t dt + o (dt) ,Pr(X 1t+dt=x

1t−1,X 2t+dt=x2t+1

∣∣ x1t , x2t ) = β x1t x2t dt + o (dt) ,

Pr(X 1t+dt=x

1t ,X

2t+dt=x

2t−1

∣∣ x1t , x2t ) = γ x2t dt + o (dt) ,

observed at discrete times

Yn = X 1n∆ +Wn with Wni.i.d.∼ N

(0, σ2

).

We are interested in the kinetic rate constants θ = (α, β,γ) a prioridistributed as (Boys et al., 2008; Kunsch, 2011)

α ∼ G(1, 10), β ∼ G(1, 0.25), γ ∼ G(1, 7.5).

MCMC methods require reversible jumps, Particle MCMC requiresonly forward simulation.

(Kyoto, 15th June 2011) 28 / 32

Page 91: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

Experimental Results

­20

 0

 20

 40

 60

 80

 100

 120

 140

 0  1  2  3  4  5  6  7  8  9  10

preypredator

Simulated data

1.5 2 2.5 3 3.5 4 4.51.5 2 2.5 3 3.5 4 4.5 0.06 0.12 0.180.06 0.12 0.18 1 2 3 4 5 6 7 81 2 3 4 5 6 7 8

α

β

γ

Estimated posteriors

(Kyoto, 15th June 2011) 29 / 32

Page 92: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

Autocorrelation Functions

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  100  200  300  400  500

α

  50 particles 100 particles 200 particles 500 particles

1000 particles

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  100  200  300  400  500

β

  50 particles 100 particles 200 particles 500 particles

1000 particles

Autocorrelation of α (left) and β (right) for the PMMH sampler forvarious N.

(Kyoto, 15th June 2011) 30 / 32

Page 93: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

Discussion

PMCMC methods allow us to design ‘good’high dimensionalproposals based only on low dimensional (and potentiallyunsophisticated) proposals.

PMCMC allow us to perform Bayesian inference for dynamic modelsfor which only forward simulation is possible.

Whenever an unbiased estimate of the likelihood function is available,“exact”Bayesian inference is possible.

More precise quantitative convergence results need to be established.

(Kyoto, 15th June 2011) 31 / 32

Page 94: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

Discussion

PMCMC methods allow us to design ‘good’high dimensionalproposals based only on low dimensional (and potentiallyunsophisticated) proposals.

PMCMC allow us to perform Bayesian inference for dynamic modelsfor which only forward simulation is possible.

Whenever an unbiased estimate of the likelihood function is available,“exact”Bayesian inference is possible.

More precise quantitative convergence results need to be established.

(Kyoto, 15th June 2011) 31 / 32

Page 95: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

Discussion

PMCMC methods allow us to design ‘good’high dimensionalproposals based only on low dimensional (and potentiallyunsophisticated) proposals.

PMCMC allow us to perform Bayesian inference for dynamic modelsfor which only forward simulation is possible.

Whenever an unbiased estimate of the likelihood function is available,“exact”Bayesian inference is possible.

More precise quantitative convergence results need to be established.

(Kyoto, 15th June 2011) 31 / 32

Page 96: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

Discussion

PMCMC methods allow us to design ‘good’high dimensionalproposals based only on low dimensional (and potentiallyunsophisticated) proposals.

PMCMC allow us to perform Bayesian inference for dynamic modelsfor which only forward simulation is possible.

Whenever an unbiased estimate of the likelihood function is available,“exact”Bayesian inference is possible.

More precise quantitative convergence results need to be established.

(Kyoto, 15th June 2011) 31 / 32

Page 97: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

References

C. Andrieu, A.D. & R. Holenstein, Particle Markov chain Monte Carlomethods (with discussion), J. Royal Statistical Society B, 2010.

T. Flury & N. Shephard, Bayesian inference based only on simulatedlikelihood, Econometrics Review, 2011.

(Kyoto, 15th June 2011) 32 / 32

Page 98: Particle Markov Chain Monte Carlo Methods · 2016. 10. 4. · Particle Markov Chain Monte Carlo Methods Arnaud Doucet University of British Columbia, Vancouver, Canada Kyoto, 15th

References

C. Andrieu, A.D. & R. Holenstein, Particle Markov chain Monte Carlomethods (with discussion), J. Royal Statistical Society B, 2010.

T. Flury & N. Shephard, Bayesian inference based only on simulatedlikelihood, Econometrics Review, 2011.

(Kyoto, 15th June 2011) 32 / 32


Recommended