+ All Categories
Home > Documents > Perpendicular MTJ stack development for STT MRAM on · PDF fileApplied Materials at AVS TFUG...

Perpendicular MTJ stack development for STT MRAM on · PDF fileApplied Materials at AVS TFUG...

Date post: 14-Mar-2018
Category:
Upload: dangnga
View: 222 times
Download: 2 times
Share this document with a friend
23
Applied Materials at AVS TFUG 2014 Perpendicular MTJ stack development for STT MRAM on Endura PVD platform Mahendra Pakala, Silicon Systems Group, AMAT Dec 16 th , 2014 AVS 2014 *All data in presentation is internal Applied generated data
Transcript

Applied Materials at AVS TFUG 2014

Perpendicular MTJ stack development for

STT MRAM on Endura PVD platform

Mahendra Pakala,

Silicon Systems Group, AMAT

Dec 16th, 2014

AVS 2014

*All data in presentation is internal Applied

generated data

Applied Materials at AVS TFUG 2014

R 140

G 140

B 140

R 220

G 220

B 220

R 69

G 153

B 195

R 254

G 203

B 0

R 255

G 121

B 1

R 234

G 40

B 57

R 155

G 238

B 255

R 146

G 212

B 0

R 75

G 75

B 75

R 6

G 30

B 60

OUTLINE

STT MRAM Background

Perpendicular Magnetic Tunnel Junction Basics

Perpendicular Magnetic Tunnel Junction Using Endura PVD

2

Applied Materials at AVS TFUG 2014

R 140

G 140

B 140

R 220

G 220

B 220

R 69

G 153

B 195

R 254

G 203

B 0

R 255

G 121

B 1

R 234

G 40

B 57

R 155

G 238

B 255

R 146

G 212

B 0

R 75

G 75

B 75

R 6

G 30

B 60

Key Drivers for STT MRAM

CPU/ Register

L1 Cache - SRAM

L2, L3 Cache - SRAM

Main Off Chip Memory - DRAM

Local Storage - FLASH

Local Storage- HDD

Offline Storage - TAPE

3

1 ns

10 ns

100 ns

104 ns

106 ns

109 ns

Today’s Hierarchy

Scaling challenges of current RAM

Latency gap between Storage and RAM

STT MRAM

Applied Materials at AVS TFUG 2014

R 140

G 140

B 140

R 220

G 220

B 220

R 69

G 153

B 195

R 254

G 203

B 0

R 255

G 121

B 1

R 234

G 40

B 57

R 155

G 238

B 255

R 146

G 212

B 0

R 75

G 75

B 75

R 6

G 30

B 60

Memory Performance Comparison

4

104

108

1012

1016

10-9 10-8 10-7 10-6 10-5 10-4 10-3

Endu

rance

Random Program Time (s)

10-10

10-8

10-6

10-5

0.001 0.01 0.1

Cell Size (mm2)

Random

Read A

ccess (

s)

NOR

SRAM

DRAM

NOR

DRAM SRAM

STTRAM

NAND

NAND

10-9

10-7

STT RAM attributes: Endurance, Fast Access & Non-Volatility

STTRAM

Applied Materials at AVS TFUG 2014

R 140

G 140

B 140

R 220

G 220

B 220

R 69

G 153

B 195

R 254

G 203

B 0

R 255

G 121

B 1

R 234

G 40

B 57

R 155

G 238

B 255

R 146

G 212

B 0

R 75

G 75

B 75

R 6

G 30

B 60

STTRAM BIT OPERATION

Storing Data

5

D (= DE/ kBT) is a

measure of length of

data retention.

K, Anisotropy is material property and,

V is the volume of storage layer

N-B thermally activated flip probability:

𝐹 𝑡 = 1 − exp −𝑁𝑡

𝜏𝑜

𝑒𝑥𝑝 −∆𝐸

𝑘𝐵𝑇

Reading Data

Reading is done by sensing the

resistance (high or low)

Magnetic direction of storage layer

High TMR% and low s

(R) for fast read

MgO

i

Writing Data

Writing is done using Spin

Transfer Torque (STT) switching

(MRAM, a precursor used magnetic

field writing – not scalable)

Low Ic at high D is one of

the tradeoffs in design

DE = KV kBT

0˚ 180˚ SL Angle

En

erg

y

“1” FM

FM

INS

TMR% =𝑅𝐴𝑃−𝑅𝑃

𝑅𝑃× 100

Tunneling Magneto-resistance (TMR): Switching current:

“0” SL

RL

Applied Materials at AVS TFUG 2014

R 140

G 140

B 140

R 220

G 220

B 220

R 69

G 153

B 195

R 254

G 203

B 0

R 255

G 121

B 1

R 234

G 40

B 57

R 155

G 238

B 255

R 146

G 212

B 0

R 75

G 75

B 75

R 6

G 30

B 60

Switching Current (Writing) vs. Data Retention

6

𝐼𝑐𝑜 ∝𝛼 𝑀 𝑉

𝜂𝐻𝑒𝑓𝑓

damping const.

effective field

moment of SL

Volume of SL

spin polarization

∆ = 𝑉𝐻𝑘𝑀𝑠

2 𝑘𝐵𝑇

Switching Current (Ico)

Low Ico at high D is key challenge for Magnetic Tunnel Junction (MTJ) stack development (along with high TMR, large pinning and thermal stability of stacks)

Data Retention / Thermal Stability (D)

Anisotropy

(~ effective field for pMTJ)

Applied Materials at AVS TFUG 2014

R 140

G 140

B 140

R 220

G 220

B 220

R 69

G 153

B 195

R 254

G 203

B 0

R 255

G 121

B 1

R 234

G 40

B 57

R 155

G 238

B 255

R 146

G 212

B 0

R 75

G 75

B 75

R 6

G 30

B 60

STT RAM Technology Options

7

Type 1

NV SRAM /

NV DRAM

Pitch > 200 nm

Type 2

SRAM, eDRAM,

Embedded

Pitch < 200 nm

CD < 60 nm

Type 3

DRAM, Dense

Standalone

Pitch < 70 nm

CD < 30nm

M M M

Perpendicular MTJ preferred for scalability

Many new thin films (few Å) and, interfaces to control

Bottom Pin pMTJ Top Pin pMTJ In-plane MTJ

Applied Materials at AVS TFUG 2014

R 140

G 140

B 140

R 220

G 220

B 220

R 69

G 153

B 195

R 254

G 203

B 0

R 255

G 121

B 1

R 234

G 40

B 57

R 155

G 238

B 255

R 146

G 212

B 0

R 75

G 75

B 75

R 6

G 30

B 60

Key Enabler: Magnetic Tunnel Junctions (MTJ)

8

In-plane MTJ manufacturability demonstrated in HDD/MRAM (in products since 2007)

Current Industry focus is on Perpendicular MTJ to enable high density arrays

MTJ

STT MRAM

Sampling: Everspin

TDK/Headway

Developing: Toshiba/Hynix

Samsung

Global Foundries

Micron

Intel

.

.

.

.

Applied Materials at AVS TFUG 2014

R 140

G 140

B 140

R 220

G 220

B 220

R 69

G 153

B 195

R 254

G 203

B 0

R 255

G 121

B 1

R 234

G 40

B 57

R 155

G 238

B 255

R 146

G 212

B 0

R 75

G 75

B 75

R 6

G 30

B 60

OUTLINE

STT MRAM Background

Perpendicular Magnetic Tunnel Junction Basics

Perpendicular Magnetic Tunnel Junction Using Endura PVD

9

Applied Materials at AVS TFUG 2014

R 140

G 140

B 140

R 220

G 220

B 220

R 69

G 153

B 195

R 254

G 203

B 0

R 255

G 121

B 1

R 234

G 40

B 57

R 155

G 238

B 255

R 146

G 212

B 0

R 75

G 75

B 75

R 6

G 30

B 60

Magnetic Tunneling Junction (MTJ)

2 spin independent channel conduction – amorphous barrier

Spin filtering for tunneling through MgO crystalline barrier

10

D (E) D( E)

E

Ef

a) Density of States in

Semiconductor

D(E) D(E)

E

Ef

b) Density of States in

Ferromagnet

D(E) D( E)

E

Ef

D(E) D( E)

E

Ef

1st Ferromagnet 2nd Ferromagnet Insulator/

Barrier

MIN

RE

SIS

TA

NC

E

(RM

IN o

r R

P)

D(E) D( E)

E

Ef

D(E) D( E)

E

Ef

MA

X R

ES

ISTA

NC

E

(RM

AX o

r R

AP)

Conduction

Valence

i

2nd Ferromagnet

Insulator

1st Ferromagnet

A

TMR% =𝑅𝐴𝑃−𝑅𝑃

𝑅𝑃× 100

RA(Ω. 𝜇𝑚2) = 𝑅𝑃 × 𝐴

Applied Materials at AVS TFUG 2014

R 140

G 140

B 140

R 220

G 220

B 220

R 69

G 153

B 195

R 254

G 203

B 0

R 255

G 121

B 1

R 234

G 40

B 57

R 155

G 238

B 255

R 146

G 212

B 0

R 75

G 75

B 75

R 6

G 30

B 60

Growth and Annealing of MgO MTJ

Annealing at 300˚ to 450˚C to obtain high TMR%

11

Applied Materials at AVS TFUG 2014

R 140

G 140

B 140

R 220

G 220

B 220

R 69

G 153

B 195

R 254

G 203

B 0

R 255

G 121

B 1

R 234

G 40

B 57

R 155

G 238

B 255

R 146

G 212

B 0

R 75

G 75

B 75

R 6

G 30

B 60

Anisotropy in Magnetic Films

Interfacial Anisotropy ( to plane)

Symmetry breaking

Strain

Electron hybridization

12

t

Metal or Oxides

Ferromagnet

K = KV + KS / t

interface bulk Effective

Anisotropy

Shape Anisotropy (in-plane)

Demagnetizing field (HD)

+ + + + + + + + + + + + +

_ _ _ _ _ _ _ _ _ _ _ _ _

t

HD = 4 MS cos

MS

For a film to have perpendicular ()

magnetization, need to satisfy:

HK – HD > 0

HK = 2K / MS

film prefer in-plane magnetization, to

reduce demagnetization field/energy

Anisotropy: Preferred direction/axis of magnetization. Many sources…only 2 shown here

Applied Materials at AVS TFUG 2014

R 140

G 140

B 140

R 220

G 220

B 220

R 69

G 153

B 195

R 254

G 203

B 0

R 255

G 121

B 1

R 234

G 40

B 57

R 155

G 238

B 255

R 146

G 212

B 0

R 75

G 75

B 75

R 6

G 30

B 60

Stray Field Balance in MTJ: SAF

13

Reduces stray field on storage layer.

Increases pin layer stability

SAF: Synthetic Anti-Ferromagnet

RL MRL

SL MSL

SL

PL

Ru spacer RL

Balanced

RKKY Oscillatory Coupling in non-magnetic spacer layer (Ru, Ir, Cr,…) Eg., CoFe\Ru\CoFe(FCC)

j > 0 Ferromagnetic coupling

j < 0: Anti-ferromagnetic coupling

spacer thickness

Applied Materials at AVS TFUG 2014

R 140

G 140

B 140

R 220

G 220

B 220

R 69

G 153

B 195

R 254

G 203

B 0

R 255

G 121

B 1

R 234

G 40

B 57

R 155

G 238

B 255

R 146

G 212

B 0

R 75

G 75

B 75

R 6

G 30

B 60

Basic MTJ Spin Dependent Coherent

tunneling

14

RL

e

MRL

SL MSL

Atomic level

matching

across

interface

STT MRAM: pMTJ Stack Engineering Summary

SyAF /SAF Pin MTJ RKKY coupling

e SL

PL

Ru (t)

4.5Å 8.5Å

RKKY coupling as function of Ru thickness

RL

Sub Å control of film thickness and interface roughness

MgO growth condition for crystal texture/quality (low impurity, OH) and anneal

Crystalline texture for magnetic materials

MgO

PMA Interface & Bulk PMA

//

Applied Internal Data

CoFeB (t) Ta

MgO

Thickness and thermal

budget control

BCC

FCC

Applied Materials at AVS TFUG 2014

R 140

G 140

B 140

R 220

G 220

B 220

R 69

G 153

B 195

R 254

G 203

B 0

R 255

G 121

B 1

R 234

G 40

B 57

R 155

G 238

B 255

R 146

G 212

B 0

R 75

G 75

B 75

R 6

G 30

B 60

OUTLINE

STT MRAM Background

Perpendicular Magnetic Tunnel Junction Basics

Perpendicular Magnetic Tunnel Junction Using Endura PVD

15

Applied Materials at AVS TFUG 2014

R 140

G 140

B 140

R 220

G 220

B 220

R 69

G 153

B 195

R 254

G 203

B 0

R 255

G 121

B 1

R 234

G 40

B 57

R 155

G 238

B 255

R 146

G 212

B 0

R 75

G 75

B 75

R 6

G 30

B 60

Perpendicular MTJ Stack Deposition

Endura PVD Platform

Applied Materials at AVS TFUG 2014

R 140

G 140

B 140

R 220

G 220

B 220

R 69

G 153

B 195

R 254

G 203

B 0

R 255

G 121

B 1

R 234

G 40

B 57

R 155

G 238

B 255

R 146

G 212

B 0

R 75

G 75

B 75

R 6

G 30

B 60

Applied Internal Data

Bottom Pin

Optimized Top Pin

(RA:12, TMR : 200%)

Perpendicular MTJ Stack Blanket Film Performance:

Transport/Tunneling (CIPT)

High TMR and BEOL Thermal Budget Compatibility for MTJ Stack Dep

Top Pin

Applied Internal Data

Thermal Stability of Bottom Pin

17

Applied Internal Data

Applied Materials at AVS TFUG 2014

R 140

G 140

B 140

R 220

G 220

B 220

R 69

G 153

B 195

R 254

G 203

B 0

R 255

G 121

B 1

R 234

G 40

B 57

R 155

G 238

B 255

R 146

G 212

B 0

R 75

G 75

B 75

R 6

G 30

B 60

Large pinning strength for SAF and square loop for Free Layer

Field (kOe)

Mo

me

nt

Applied Internal Data

FL

RL

PL

18

Perpendicular MTJ Stack Blanket Film Performance,

Magnetics (VSM)

Top Pin

Applied Internal Data

Bottom Pin

SAF

SL

Applied Materials at AVS TFUG 2014

R 140

G 140

B 140

R 220

G 220

B 220

R 69

G 153

B 195

R 254

G 203

B 0

R 255

G 121

B 1

R 234

G 40

B 57

R 155

G 238

B 255

R 146

G 212

B 0

R 75

G 75

B 75

R 6

G 30

B 60

19

Patterned pMTJ Performance Metrics

Field Scan

Direction

V

Hc

Hoff

RAP

RP

𝑇𝑀𝑅 = 𝑅𝐴𝑃 − 𝑅𝑃

𝑅𝑃× 100%

High TMR for fast read

Low Hoff for reliability

Low RP sigma for yield

High Hc ( Hk) for data retention

1) Quasi Static Test (measure MTJ resistance as field is scanned),

2) Pulse current measurements

Applied Materials at AVS TFUG 2014

R 140

G 140

B 140

R 220

G 220

B 220

R 69

G 153

B 195

R 254

G 203

B 0

R 255

G 121

B 1

R 234

G 40

B 57

R 155

G 238

B 255

R 146

G 212

B 0

R 75

G 75

B 75

R 6

G 30

B 60

20

MTJ Size Dependence (Patterned): Top Pin

High TMR and HC can be achieved by MTJ stack optimization and etch process tuning.

20nm bits with highest TMR of ~ 153% and Hc ~ 850 Oe.

20nm

Resis

tance (

Ohm

s)

Field (Oe)

Hoff

Hc ~ 850 Oe

Rmin:30k, Rmax: 70k

TMR ~ 153%

Patterned

Applied Internal Data

20nm

(smallest CD)

Applied Materials at AVS TFUG 2014

R 140

G 140

B 140

R 220

G 220

B 220

R 69

G 153

B 195

R 254

G 203

B 0

R 255

G 121

B 1

R 234

G 40

B 57

R 155

G 238

B 255

R 146

G 212

B 0

R 75

G 75

B 75

R 6

G 30

B 60

21

Switching Current (Ic) & Scalability

Applied Internal Data Applied Internal Data

Applied Internal Data

Low switching current (~ 20uA) obtained by pMTJ stack optimization

D (data retention) ~ 50 for ~ 20nm.

Applied Internal Data

20-25nm

(smallest CD)

Applied Internal Data

Applied Materials at AVS TFUG 2014

R 140

G 140

B 140

R 220

G 220

B 220

R 69

G 153

B 195

R 254

G 203

B 0

R 255

G 121

B 1

R 234

G 40

B 57

R 155

G 238

B 255

R 146

G 212

B 0

R 75

G 75

B 75

R 6

G 30

B 60

Summary

STT MRAM offers good endurance, speed and non-volatility. Hence being

considered for embedded, cache and stand alone memory.

One key challenge for making high density STT MRAM is developing materials with

low switching current (Ico) at high thermal stability (D), with high TMR% & pinning.

Using Endura PVD system, perpendicular MTJ stacks with performance suitable

for dense arrays were demonstrated.

– Blanket film performance: TMR ~ 200% at RA ~ 12. Pinning > 2kOe.

– 20nm patterned MTJ: Ico of ~ 20uA, D > 50, patterned TMR of ~ 153%

22

Thanks for your attention!


Recommended