+ All Categories
Home > Documents > Proyecto Final Pórtico

Proyecto Final Pórtico

Date post: 20-Feb-2018
Category:
Upload: jose-avila-b
View: 219 times
Download: 0 times
Share this document with a friend

of 20

Transcript
  • 7/24/2019 Proyecto Final Prtico

    1/20

    FINAL PROJECT OFSTEEL STRUCTURES

    NAMES:

    AVILA BRITO JOS EDUARDODIEGO PAZMIO

    Design a porch consisting of an area of 600 m ^ 2,where the views of both tension, compression isapplied, and bending design with a sloping roof slopeunder the LRFD design and all relevant charges areirrelevant .

    http://www.servitechosecuador.com/techos-metalicos-entrepeso-varilla-corrugada-aluminizado-galvalume-master-1000.php

  • 7/24/2019 Proyecto Final Prtico

    2/20

    PROPERTY PROFILE: IPE400

  • 7/24/2019 Proyecto Final Prtico

    3/20

    Sx

    1160cm3

    d 400m

    bf

    180m tf

    13.5m Fy 36ksi 2.482 108

    Pa

    tw 8.6m E 29000ksi 1.999 1011 Pa

    h d 2 tf 373m

    Iy 1320cm4

    Ix 23130cm4

    Ap 84.50 cm2

    ry

    Iy

    Ap

    3.952 c Sy

    Iy

    bf

    2

    146.667cm3

    Sy 8.95in3

    Cw values, Zx, Zy and ho J were obtained from the above table IPE properties, in our case the IPE 400

    With this criterion the profile W16x45 took with similar characteristics with a value of Cw =1190 in^6; Zx =1308 cm ^ 3; Zy = 226 cm^ 3; J = 37.4 cm^ 4; ho = 15.6 in

    Cw 490000cm6

    Zx

    1308 cm3

    Zy 226cm3

    Jf 37.4cm

    4

    ho 15.6in

    Width cooperating

    ancho 1.5 0.

    Roof load

    pesot 3.35kgf

    m2

    Pt pesotancho 5.025kgf

    m

    pesov 66.3kgf

    m

  • 7/24/2019 Proyecto Final Prtico

    4/20

    ANALYSIS OF CHARGES

    PD Pt pesov 71.325kgf

    m

    PDy PDcos 19deg( ) 67.439

    kgf

    m

    PDx PDsin 19deg( ) 23.221kgf

    m

    WIND LOADS

    Page. 12 NEC2011-CAP. 1vb 21

    m

    s

    Table 1.5Cf 0.7

    Ce 1.63

    P: pressure in Pa 1.12

    kg

    m3

    Puyo city: density of air kg/m^3

    V_b: velocity of the wind m/s

    P1

    2

    vb

    2 C

    e C

    f

    P 28.734kgf

    m2

    Py P sin 71de g( ) 27.168kgf

    m2

    Px P cos 71de g( ) 9.355kgf

    m2

    PWy Py ancho 40.752kgf

    m PWx Pxancho 14.032

    kgf

    m

    LIVE LOAD

    cargaL 1kN

    m2

    Page. 6 NEC2011-CAP. 11

    Table 1.2

    cargaLy cargaLcos 19deg( ) 96.416kgf

    m2

    cargaLx cargaLs in 19deg( ) 33.199kgf

    m2

  • 7/24/2019 Proyecto Final Prtico

    5/20

    PLx cargaLxancho 49.798kgf

    m

    PLy cargaLyancho 144.624kgf

    m

    SEISMIC LOAD

    PEx10

    100PDx 2.322

    kgf

    m

    PEy10

    100PDy 6.744

    kgf

    m

    LOADS FACTORED

    PUy 1.2PDy 1.6PLy 0.5PWy 332.702kgf

    m

    PUx 1.2PDx 1.6PLx 0.5PWx 114.558kgf

    m

    MOMEMTS FACTORED:

    L1

    12

    Mux

    PUyL12

    85.989 10

    3 kgf

    Muy

    PUxL12

    32515.513kgf

    MPx Fy Zx 3.311 104

    kgf

    MPy Fy Zy 5. 72 103

    kgf

    bf

    2 tf

    6.667 0.38E

    Fy

    10.785

    It is a compact section on flange

  • 7/24/2019 Proyecto Final Prtico

    6/20

    h

    tw

    43.372 3.76

    E

    Fy

    106.717

    It is a compact section in the web

    Mnx Fy Zx 2.98 1 04

    kgf

    Mny Fy Zy 5.148 103

    kgf

    Mux

    Mnx

    Muy

    Mny

    0.301

    Holds for material flow and sections provided

    We turn to the section F.2 standard AISC memberssouls and compact fold symmetry skates

    LATERAL-TORSIONAL BUCKLING

    Lb

    12

    Lp 1.76ryE

    Fy

    1.974m

    rts

    Iy Cw

    Sx1.843 in

    As a twin-symmetry the value of c is assumed to be 1 for a hot-rolled profile

    cf

    1

    Lr 1.95rts E

    0.7Fy

    Jf cf

    Sxho 1 1 6.76

    0.7Fy Sx ho

    E Jf cf

    2

    5.982

    As Lb exceeds the third literal Lr ratio C is used, in which one proceeds to calculate a critical force.

    Cb is the lateral-torsional buckling modification factor for no uniform moment diagrams when both endsof the unsupported segment are braced.

  • 7/24/2019 Proyecto Final Prtico

    7/20

    To be conservative Cb value equal to 1 shall be made.

    Cb 1

    Fcr

    Cb2

    E

    Lb

    rts

    2

    1 0. 07 8

    Jf cf

    Sxho

    Lb

    rts

    2

    9.907 ksi

    Mnx1 Fcr Sx 8.08 103

    kgf

    As he turned to the major axis xx we proceed with the minor axis y-y, so we headed to the section ofthe standard F6 AISC to double symmetry I profiles and channels C.

    1) Yielding:Mny1 Fy Zy 5.72 10

    3 kgf

    1.6Fy Sy 5.94 103

    kgf

    For the analysis of armor calculation it was made using a structural analysis software 2D members(FTOOL), resulting in the most critical members as follows:

  • 7/24/2019 Proyecto Final Prtico

    8/20

    CALCULATION OF CHARGES IN MOST CRITICAL NODES PORCH

    LOADS FACTORED

    PUy1 1.2PDy 1.6PLy 0.5PWy 332.702kgf

    m

    PUx1 1.2PDx 1.6PLx 0.5PWx 114.558kgf

    m

    LOADS

    Profucop 12

    PUny PUy1Profucop 39.152 kN

    PUnx PUx1Profucop 13.481 kN

  • 7/24/2019 Proyecto Final Prtico

    9/20

  • 7/24/2019 Proyecto Final Prtico

    10/20

    TENSION ANALYSIS

    2

    3d 0.267m b

    f 0.18m

    u

    0.75 Fu

    58ksi 3.999 108

    Pa

    PU

    333.1kN bf

    2 d

    3

    U 0.85

    Agperfil 84.5cm2

    8. 45 10 3

    m2

    Agmin

    333.1kN

    Fy1.491 10

    3 m

    2

    Ae

    min

    333.1kN

    uFu

    1.111 10 3

    m2

    Anmin

    Aemin

    U1.307 10

    3 m

    2

    Agmin Agperfil OK CUMPLE

    YIELDING:

    Pn1 Fy Agperfil 1.888 106

    N

    Pn1

    PU

    OK CUMPLE

    BREAK:

    Pn2

    uFu

    Anmin

    U

    Pn2

    3.331 105

    N

    Pn2

    PU

    OK CUMPLE

    SLENDERNESS:

    rx

    16.5c

    2.83m

    ry

    71.602 Ok

  • 7/24/2019 Proyecto Final Prtico

    11/20

    COMPRESSION ANALYSYS:

    Kx 1

    Ky 1

    Lx

    3

    Ly L

    KxLx

    rx

    18.182

    Ky Ly

    ry

    75.904

    COMPRESSIVE STRENGTHS:

    Agperfil 84.5cm2

    PUC

    307.8kN

    Fex

    2

    E( )

    KxLx

    rx

    25.97 10

    9 Pa

    xFy

    Fex

    0.204

    Fcrx 0.658x

    2

    Agperfil Fy 2.061 106

    N

    Pnx 0.9 Fcrx 1.855 103

    kN

    Pnx

    PU

    OK

    Fey

    2

    E( )

    Ky Ly

    ry

    2 3.425 10

    8

    Pa

    y

    Fy

    Fey

    0.851

  • 7/24/2019 Proyecto Final Prtico

    12/20

    Fcry 0.658y

    2

    Agperfil Fy 348.152kip

    Pny 0.9 Fcry 1.394 103

    kN

    Pny PUC OK

    FLEXURAL ANALYSIS:

    Reasons Width Thickness:

    Unstiffened elements: Flanges

    Lz

    L bf

    t

    f

    13.333

    0.56E

    Fy

    15.894 Compact Flanges

    Elements stiffened: Web hw

    331m

    hw

    tw

    38.488

    1.49E

    Fy

    42.29 Compact Web

    As I used this is a structural element of double symmetry then the following formula is used:

    Cw

    4.9 105

    cm6

    Jf

    37.4 cm4

    Kz

    1

    Gc 11200ksi

    Fez

    2E Cw

    Kz Lz 2

    GcJf

    1

    Ix Iy 5.576 10

    8 Pa

    z

    Fy

    Fez

    0.667

  • 7/24/2019 Proyecto Final Prtico

    13/20

    Fcrz 0.658z

    2

    Agperfil Fy 1.741 106

    N

    Pnz 0.9 Fcrz 1.567 103

    kN

    Pnz PUC OK

    TOTAL WEIGHT OF THE ROOF:

    Lperfiles 4 2 1m 3m 2m 3.47m 8.5m 9m( ) 3m[ ] 36m 263.76

    Lvigas 18 36 m 648m

    LT Lperfiles Lvigas 911.76m

    Ptp pesovLT 6.045 104 kgf

    Ptt pesot 2 9 m36 m 2.171 103

    kgf

    PT Ptp Ptt 6.262 104

    kgf

    PDt

    PT

    612m2

    102.321kgf

    m2

    TAX ANALYSIS OF AREAS

    CALCULATION OF TAX AREAS

    Column A1 Column B1

    AA1

    6m 8.5 m( ) 51m2

    AB1

    6m8.5 m( ) 51m2

    Column A2 Column B2

    AA2

    12m 8.5 m( ) 102m2

    AB2

    12m 8.5 m( ) 102m2

    Column A3 Column B3

    AA3 12m8.5 m( ) 102m2

    AB3

    12m8.5 m( ) 102m2

  • 7/24/2019 Proyecto Final Prtico

    14/20

    Column A4 Column B4

    AA4 6m 8.5 m( ) 51m2

    AB4

    6m 8.5 m( ) 51m2

    ANALYSIS OF CHARGES FOR ROOF COLUMNS

    On the roof floor will be located single asymmetric load forces such as keeping the live load, wind and deadload of the structure of steel beams to both the belts and the internal members of armor

    As shown in the analysis of tax areas most critical column which is greater support area is obtainedwith a value of 102 m ^ 2, which are A2, B2, A3, B3

    DEATH LOAD (D):DETERMINE THE DEAD LOAD WEIGHT THROUGH THE ROOF STRUCTURE OF THESHED, CONSIDERING THE RESPECTIVE INCLINATION THERE OF A 19.44 , AS COLUMNLOADS ONLY SUPPORT SCANNING THE SAME VERTICAL COMPRESSION ONLY

    PDT

    PDt

    AA3

    102.35 kN

    LIVE LOAD (L):

    KEEPING THE ROOF ABOVE ANALYZED A LIVE LOAD 1 KN / m ^ 2 AND IS THE SAME SERVING ON

    COLUMNS

    PLT cargaLAA3 102kN

    LOADS FACTORED

    Pw.y P sin 71deg( ) AA3 27.176 kN

    PUT 1.2PDT 1.6PLT 0.5 Pw.y 67.354 kip

    AREA NEEDED

    c 0.

    Ag

    PUT

    c2

    3Fy

    20.118 cm2

  • 7/24/2019 Proyecto Final Prtico

    15/20

    Obtain a profile HEB 120 with an area of 34 cm2

    INERTIAS RADII AND CHOSEN PROFILE

    Aperfil 34cm2

    Ixx

    864cm4

    rx1

    Ixx

    Aperfil

    5.041 c

    Iyy 318cm4

    ry1

    Iyy

    Aperfil

    3.058 c

  • 7/24/2019 Proyecto Final Prtico

    16/20

    SLENDERNESS

    THE SUPPORTS TO BE USED FOR EACH COLUMN IS FITTING WITH A VALUE OF DESIGN 0.65

    K

    z1

    0.6 Kx1 0.6 Ky1 0.6

    THE HEIGHT IS DELGALPN 5 m HEIGHT

    Lx1

    500c

    Ly1 Lx1 Lz1 Lx1

    Kx1Lx1

    rx1

    64.471

    Ky1Ly1

    ry1

    106.27

    Compressive strengths:

    Aperfil 34cm2

    Fex1

    2

    E( )

    K

    x1

    L

    x1

    rx1

    268.86 ksi

    x1

    Fy

    Fex1

    0.723

    Fcrx1 0.658x1

    2

    Aperfil Fy 152.434kip

    Pnx1

    0.9 Fcrx1 6.103 10

    5 N

    DEMAND CAPACITY:

    D / C=PUT

    Pnx1

    100 49.095

    Fey1

    2E( )

    Ky1Ly1

    ry1

    225.344ksi

  • 7/24/2019 Proyecto Final Prtico

    17/20

    y1

    Fy

    Fey1

    1.192

    Fcry1

    0.658

    y12

    Aperfil

    Fy

    104.692kip

    Pny1 0.9 Fcry1 94.223 kip

    DEMAND CAPACITY:

    D / C=PUT

    Pny1

    100 71.484

    FLEXURAL ANALYSIS:

    Reasons Width Thickness:

    Unstiffened elements: Flanges

    b1 140m t 12 m tw 7 m

    bb1

    2

    tw

    2 66.5m

    b

    t5.542

    MEET THE FLANGES0.56

    E

    Fy

    15.894

    ELEMENTS STIFFENED: WEB

    h1 140m

    h1 1 h1 2 t( ) 116m

    h11

    tw16.571

    MEET THE WEB1.49

    E

    Fy

    42.29

  • 7/24/2019 Proyecto Final Prtico

    18/20

    As I used this is a structural element of double symmetry then the following formula is used:

    Cw values and J were taken in a manner analogous to the catalog profile AISC with similarcharacteristics W 5X16 and values are:

    Cw1 40.6 in

    6

    Jp1 0.192 in

    4

    Fez12E Cw1

    Kz1 Lz1 2

    GcJp1

    1

    Ixx Iyy 100.719ksi

    z1

    Fy

    Fez

    0.667

    Fcrz1 0.658z1

    2

    Aperfil Fy 157.468kip

    Pnz1 0.9 Fcrz1 141.721kip

    DEMAND CAPACITY:

    D / C=PUT

    P

    nz1

    100 47.526

    DESIGN BASE PLATES

    To make the design of the motherboard must first calculate the factored load that would

    support each is so:

    Calculus of the load to be supported by the motherboard

    DEATH LOAD (D):

    HERE THE VALUE OF DEAD WEIGHT LOAD COLUMN JOINS

    Weight of columns:

    nc1

    8 PDcpb 26.70

    kgf

    m hpb 5

  • 7/24/2019 Proyecto Final Prtico

    19/20

    For the total weight of columns per floor multiply the height of the floor in the design and the numberof columns of design in our case is 8

    PDcpbj PDcpb hpb nc1 1.068 103

    kgf

    LOADS FACTORED

    PUTf 1.2 PDT PDcpbj 1.6PLT 0.5 Pw.y 70.18 kip

    For the value we factored load to divide the value of the total area of 612 m 2 and then multiply thepressure value factored by critical tax area is 102 m2

    PUTf

    612m2

    52.015kgf

    m2

    PUfinal 52.015kgf

    m2

    AA3 11.697 kip

    FOR THE CALCULATION OF THICK STEEL PLATE MATERIAL it IS USED AS STEEL A36 WITH AVALUE OF YIELD STRENGTH OF 36 KSI

    c1

    0.6 fc 3 ksi 2.068 10

    7 Pa

    A1req

    PUfinal

    c1 0.85 fc( )45.528 cm

    2

    0.95 h1 0.8b1

    21.05c

    N1 A1req 7.797 c

    Nfin

    0.08

    B

    A

    1reqNfin

    5.691 c Bfin 0.06

    A1fin Nfin Bfin 48cm2

    n1

    Bfin

    0.8b1

    20.026 m

    m1

    Nfin

    0.95 h1

    20.027 m

  • 7/24/2019 Proyecto Final Prtico

    20/20

    x4 h1 b1

    h1 b1( )2

    PUfinal

    c1

    0.85 fc( ) A1fin

    0.948

    pb

    2 x

    1 1 x 1.588

    pbfin 1

    finpbfin h1 b1

    40.035m

    It then chooses the least: fin

    tmin fin

    2 PUfinal

    0.9Fy A1fin 0.429 in

    tminfinal

    1

    2in

    NOTE:FOR THE ANALYSIS OF CHARGESare not take into account the seismic loadalthough was calculated, for the reason that with the combination of loads according to LRFD notinfluence greatly according to equations raised by the same.


Recommended