+ All Categories
Home > Documents > S2 Chemistry materials - LT Scotland

S2 Chemistry materials - LT Scotland

Date post: 18-Dec-2021
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
37
1 S2 Chemistry materials do not write on these sheets
Transcript
Page 1: S2 Chemistry materials - LT Scotland

1

S2 Chemistry

materials

do not write

on these sheets

Page 2: S2 Chemistry materials - LT Scotland

2

Page 3: S2 Chemistry materials - LT Scotland

3

Page 4: S2 Chemistry materials - LT Scotland

4

Any substance can be described as a SOLID, LIQUID or a GAS.

These are called the THREE STATES OF MATTER.

1. Solids Imagine you are building a house and you make a list of all the things you need:

bricks, wood, glass, pipes, roof tiles

All these have something in common. They are hard and keep their shape. They are called solids.

Fraser wants to hammer a nail into a piece of wood. He uses a hammer or a stone because they are both hard solids.

1. Copy and complete the table below in your jotter. 2. Draw any solid and write a description about it.

MATERIALS

Page 5: S2 Chemistry materials - LT Scotland

5

Liquids If you want to wash a kitchen floor or a car there a several substances you could use

water, disinfectant, washing-up liquid, bleach

All these have something in common. They are runny and wet and flow wherever they can. They are called liquids.

They take up the shape of the container into which they are poured.

1. Copy and complete the table below in your jotter. 2. Draw any liquid and write a description about it.

Heather wants to clean mud from a path. She uses a hose and sprays it with water. Water is a liquid. Liquids spread out to cover a surface.

Page 6: S2 Chemistry materials - LT Scotland

6

Gases We all have to breathe to stay alive. We breathe in many substances

nitrogen, oxygen, argon, carbon dioxide

These substances are called gases. They spread out to fill all the spaces they can find. Gases fill the contain-ers in which they are kept. Many gases, like those found in air, are invisible.

Frank has a puncture. To find the hole, he pumps the tube full of air to blow it up.

Air is a gas. Gases spread out to fill all the space they are given.

When a gas tap is left on in the lab, the whole class can soon smell gas. This is because the gas fills the whole room. If you left the water tap on, only the floor would get wet. Liquids spread out to cover a surface only, but a gas can go anywhere.

1. Copy and complete the table below in your jotter. 2. Write a description about any gas you choose.

Page 7: S2 Chemistry materials - LT Scotland

7

2. Particles

All substances are made from particles. The way in which these particles are:

Arranged How they move

How close they are to their neighbours

explains why they behave the way they do.

Solids

Solids have a fixed shape and cannot flow. Particles are only able to vibrate about a fixed position.

They cannot move from place to place. Bonds between particles are strong and so keep the particles stuck together.

Liquids

Liquids flow and take the shape of their container. When water is poured into a glass, the particles of water are still close together but can move over each other. They keep on moving over each other as the water takes the shape of the glass. The bonds between the particles are strong but weak enough to let them move around each other.

Gases

Gases flow to fill their container and to take its shape. This is because there are no bonds between the particles and so they can move in all directions.

When a bunsen burner is turned on, particles of gas are free to move anywhere inside the tubing. The pressure forces them through the tubing and into the bunsen.

“solid”

“liquid”

“gas”

Page 8: S2 Chemistry materials - LT Scotland

8

Particles:

1. Cut out all of the nine diagrams from 2. Draw a table with three headings in your jotter : SOLIDS, LIQUIDS & GASES. 3. Place the diagrams under the correct heading. Get your teacher to check your answers before sticking them in.

handout 1

QUESTIONS: Explain: 1. How ice is different from water. 2. Why you can walk on a frozen pond. 3. Why water is runny. 4. Why a car tyre goes flat if a nail makes a hole in it. 5. Why a balloon gets bigger as you blow more air into it.

Activity 2.1

1. Now cut out all the 20 boxes from 2. On the same table, place these boxes under the correct heading. 3. Get your teacher to check your answers before sticking them in.

handout 2

Activity 2.2

Page 9: S2 Chemistry materials - LT Scotland

9

handout 1

handout 1

Page 10: S2 Chemistry materials - LT Scotland

10

handout 2

Particles Are free

To move

Will always keep its shape

Particles moving fast in all

directions

Particles Are free

To move

Will always keep its shape

Will always keep its shape

Will not

flow

Will not

flow

Particles are

vibrating

Will keep the same volume

Will keep the same volume

Takes the shape of its container

Takes the shape of its container

Particles moving about changing

places

Can flow

easily

Can flow

easily

Particles fixed in a regular

pattern

Particles unable to move over each other

Will keep the same volume

Particles moving about changing

places

handout 2

Particles Are free

To move

Will always keep its shape

Particles moving fast in all

directions

Particles Are free

To move

Will always keep its shape

Will always keep its shape

Will not

flow

Will not

flow

Particles are

vibrating

Will keep the same volume

Will keep the same volume

Takes the shape of its container

Takes the shape of its container

Particles moving about changing

places

Can flow

easily

Can flow

easily

Particles fixed in a regular

pattern

Particles unable to move over each other

Will keep the same volume

Particles moving about changing

places

Page 11: S2 Chemistry materials - LT Scotland

11

1. HEATING: Solid to Liquid

The more energy particles have, the more they can move around. Particles in solid chocolate or ice or gold do not have much energy. This is why they are hard.

The particles in water or runny chocolate or molten gold have more energy to move about.

We must supply energy to change ice into water or chocolate into a sticky mess. We have to give the particles enough energy so that they can slide about.

Heating a solid gives the particles more energy causing them to move faster. This extra energy weakens the bonds between the particles

causing the solid to melt.

Pure ice melts into water at 0oC. This is the melting point of water.

3. changes of state Substances can be changed from one state into

another state by Heating or Cooling.

Metals, like aluminium and iron, have to be very hot to melt. They have very high melting points. Aluminium melts at 600oC Iron melts at 1,500oC Tungsten melts at 3,400oC !

If the temperature around a solid is

higher than its melting point,

then the solid will melt.

Wax in candles melt at 50oC

melting 1 melting 2 melting 3

heat

Chocolate melts at about 35oC. We say that chocolate has a higher melting point than ice.

Icebergs getting smaller

Explain in terms of energy what is happening in the diagram shown left.

Page 12: S2 Chemistry materials - LT Scotland

12

3. COOLING: Gas to Liquid

Particles in a gas have so much energy that they move about very quickly in-deed. When we cool something we take heat away from it.

When the gas is cooled down, the energy of the particles decreases. This causes the particles to move much more slowly.

condensing 1 condensing 2

cool

2.HEATING: Liquid to Gas

The particles in water or molten gold have more energy to move about.

If even more energy is supplied to these liquids, the particles have enough energy to move much faster. They can break the bonds between their neighbours and fly away. They have turned into a gas.

A gas condenses when it turns into a liquid.

changes of state

A liquid evaporates when it turns into a gas.

boiling 1 boiling 2

heat

Hair dries

Explain in terms of energy what is happening in the two diagrams shown left.

Bus windows mist up in winter

Page 13: S2 Chemistry materials - LT Scotland

13

4. COOLING: Liquid to Solid

Particles in a liquid have enough energy to move about by sliding over each other. When the liquid is cooled, the energy of the particles decreases. Particles now move much more slowly. They are now fixed in position. New bonds form between particles and the liquid turns into a solid.

“freezing”

bill nye “phases of matter”

A liquid freezes when it turns into a solid.

changes of state

cool

Icicles forming on trees

Explain in terms of energy what is happening in the diagram shown left.

Page 14: S2 Chemistry materials - LT Scotland

14

changes of state: solid to liquid

1. Put on your safety goggles.

2. Put a few crystals of the solid into the test tube.

3. Put this test tube into a beaker of water.

4. Heat the water with the bunsen burner but don’t let it boil.

5. Watch carefully to see what happens to the solid. 6. Write an account of your experiment using the headings Aim, Method & Results.

changes of state: liquid to gas

1. Put on your safety goggles.

2. Half fill a beaker with water and put it on the tripod stand.

3. Light the Bunsen burner and heat the water but don’t let it boil. Turn off the bunsen.

4. Put FIVE drops of the liquid into the test tube. Place a cotton wool plug onto the tube.

5. Put the test tube into the hot water.

6. Watch carefully what happens to the liquid. 7. Write an account of your experiment using the headings Aim, Method & Results.

Questions

1. What happened when the a) solid and b) the liquid were heated up?

2. Give everyday examples of each of these changes of state.

Activity 3.1

Activity 3.2

Page 15: S2 Chemistry materials - LT Scotland

15

changes of state: gas to liquid 1. Make sure you keep your test tube from the last experiment.

2. Put some ice into a different beaker.

3. Put your test tube containing the gas into the ice and stir it around.

4. Watch carefully what happens inside the test tube

5. Write an account of your experiment using the headings Aim, Method & Results.

Questions

1. What happened when the gas was cooled down?

2. Give an example of this change of state.

4. changes of state: The Water Cycle

Activity 3.3

Water is the only substance that can be found naturally on the Earth as a liquid, a solid (ice) or a gas (water vapour). Water moves around the environment in a recycling process known as the Water Cycle.

Page 16: S2 Chemistry materials - LT Scotland

16

changes of state: The Water Cycle

1. Cut out all of the 20 labelled statements from 2. Write out four headings in your jotter as shown below: MELTING, EVAPORATING, FREEZING & CONDENSATION. 3. Place the labels under the correct heading. Get your teacher to check your answers before sticking them in.

handout 4

Activity 4.2

Activity 4.1

1. Collect 2. Fill in the blanks from 1 to 9. 3. Stick your handout into your jotter.

handout 3

Questions

Explain why: 1. It takes longer for towels to dry outside than towels that are held in front of a fire. 2. You feel cold standing about after you have been swimming. 3. Boiling potatoes have been burnt below

Page 17: S2 Chemistry materials - LT Scotland

17

1.solid

2.

3.

4.

water

cycle

handout 3

1.solid

2.

3.

4.

water

cycle

handout 3

Page 18: S2 Chemistry materials - LT Scotland

18

handout 4

ice cubes

disappearing

juice forming

a “slush puppy”

paint

drying

puddles

disappearing

pond becomes

a skating rink

clothes

drying

water on kitchen tiles next to a kettle

“tippex” covering

up mistakes

windows mist up

after a shower

hailstones

forming

ice lolly

dripping

fog

blow drying

your hair

dew on the

morning grass

snow

forming

preparing water

to make tea

on a cold day

we see

our breath

nail varnish

hardening

” runny”

ice cream

frosty windows in the morning

handout 4

ice cubes

disappearing

juice forming

a “slush puppy”

paint

drying

puddles

disappearing

pond becomes

a skating rink

clothes

drying

water on kitchen tiles next to a kettle

“tippex” covering

up mistakes

windows mist up

after a shower

hailstones

forming

ice lolly

dripping

fog

blow drying

your hair

dew on the

morning grass

snow

forming

preparing water

to make tea

on a cold day

we see

our breath

nail varnish

hardening

” runny”

ice cream

frosty windows in the morning

Page 19: S2 Chemistry materials - LT Scotland

19

Use the information given above to fill in the boxes on handout 5

Warm damp air is full of water vapour. The air stays clear as long as the water is all vapour. However, the higher you go the cooler it gets. The vapour condenses into a fine mist of water droplets held up (suspended) by the air - better known as clouds.

1. Winds carry the warm damp air upwards. 2. The droplets are swept up by the climbing air. 3. They collide and bump into each other. 4. They combine to make bigger drops. 5. Eventually they get so big and heavy they start to fall as rain or snow. 6. Rain water runs over the land and collects in lakes or rivers, which take it back to the sea. 8. The cycle starts all over again.

“water cycle”

changes of state: The Water Cycle.

bill nye “the water

cycle”

Activity 4.2

Page 20: S2 Chemistry materials - LT Scotland

20

The Water Cycle

insert

handout 5

here

Page 21: S2 Chemistry materials - LT Scotland

21

5. solutions: no lumps

You make a solution by dissolving one thing in another. As you stir a teaspoonful of sugar into a glass of water, the sugar seems to get less and less.

Looking through a magnifying glass you will see the little lumps of sugar go soft at the edges and get smaller and smaller.

Tap water doesn’t taste of anything, but sea water and swimming pool water taste awful. That’s because there is stuff in the water.

Sea water is salty. You can taste the salt in the water. Swimming pools have chlorine in the water which kills germs and nips your eyes.

You can’t see chlorine in the pool. You can’t see salt in the sea. Both the chlorine and the salt mix completely in the water to make solutions.

Fizzy drinks are also solutions. It looks just like a single liquid, without any lumps in it. It is mostly water with sugar, flavourings, colouring and gas in it. When you pour it out some of the bubbles of gas escape out of the solution.

When the lumps have disappeared you have a sugar solution. It just looks like pure water. A liquid (water) has dissolved the solid (sugar). The substance that dissolves is called the solute. The liquid which dissolves it is called the solvent.

Questions a) What is a a) solute b) solvent c) solution? b) Which of these are solutions? Sea water, fresh water, “Irn Bru”, sugar, mercury, lemonade, oil.

“dissolving”

“fountain experiment”

Page 22: S2 Chemistry materials - LT Scotland

22

For a solid to be dissolved easily, we need the correct solvent. Dirty clothes are washed in hot water as the solvent for the dirt, dissolving it which is then “washed away”. (Soap powder is added to help the water dissolve the dirt).

However, hundreds of solids (and liquids) will not dissolve in water. e.g. plastic, metals, inks, cotton wool, etc. This experiment lets you find out which substances dissolve in water.

solutions: water as a solvent

Activity 5.1 1. Put about 3cm of water in a test tube.

2. Add a very small amount of substance into the test tube.

3. Shake the tube from side to side

4. Look carefully. Has the substance dissolved? Have any other changes taken place?

5. Copy & complete the table below. Put your results in it. 6. Write an account of your experiment using the headings Aim, Method & Results.

A list of stuff (solutes) dissolved in bottled water

Page 23: S2 Chemistry materials - LT Scotland

23

solvent used number of strokes to remove it

Questions a) How did you make this a ‘fair’ experiment? b) Which of your solvents would make good “nail-varnish removers”?

Activity 5.2

solutions: solvents other than water

1. Collect a slide with streaks of nail-varnish on it.

2. Put only one drop of a solvent onto the cotton bud.

3. Try to remove the nail-varnish streak using the bud.

4. Count how many strokes it took to dissolve the streak.

5. Copy & complete the table below. Put your results in it. 6. Write an account of your experiment using the headings Aim, Method & Results.

cotton bud

Certain solids do not dissolve in water. A different solvent is needed to dissolve them. So how is grass, blood or coffee stains removed from clothes if warm water will not dissolve them? This is when a different solvent, other than water, is used. This experiment lets you find out which solvents can dissolve nail-varnish.

Page 24: S2 Chemistry materials - LT Scotland

24

6. solutions: crystals

Copper sulfate crystals are easy crystals to grow. Here's how you can grow copper sulfate crystals yourself.

step one: making the saturated solution 1. Put 50cm3 of water into a beaker.

2. Add one spatulaful of copper sulfate. Stir until all the solute is dissolved.

3. Repeat Step 2 until no more will dissolve.

4. Transfer the beaker to a tripod stand and heat up the contents using a Bunsen. Stop heating just before it boils. 5. Add another spatulaful of copper sulfate and stir until all is dissolved. 6. Repeat Step 5 until no more will dissolve. You have now made a saturated solution.

If you put lots of sugar in your tea it’ll taste really sweet. We say it is a concentrated solution. There is a lot of solute dissolved.

If you add even more sugar it will stop dissolving. No more solute can dissolve. We now have a saturated solution. We need a saturated solution if we are to make crystals.

Activity 6.1

A crystal is a solid whose particles are arranged in a 3-D repeating pattern. Computer processors are made from pure silicon crystals Keys are mostly iron crystals. Gold wedding rings are crystals. Accurate clocks have vibrating quartz crystals in them. Diamonds, rubies, sapphires and emeralds are very expensive and beautiful crystals. But they can also be found in your kitchen in the form of sugar and salt!

Crystals can be grown by making a type of solution called a saturated solution.

Liquid crystals, can act as both as a liquid and as a crystal. They are ordered like a solid crystal in two directions, but not in a third. This allows them to flow like a liquid. They are used to create a Liquid Crystal Display (LCD) in calculators and flat-screen TVs.

concentrated solution

saturated solution

Page 25: S2 Chemistry materials - LT Scotland

25

solutions: crystals

1. Now tie a ‘seed’ crystal to a piece of thread.

2. Hang the thread with the crystal dipping into the middle of your saturated solution as shown.

3. Leave it until the next day. 4.Write an account of your experiment using the headings Aim, Method & Results.

Making crystals, known as crystallisation, is very important to a chemist. It is used to make substances very pure. The more you crystallise a substance (recrystallise) the purer it becomes. Sugar cane and medicines such as penicillin, aspirin and insulin all have to be recrystallised.

Draw the size and shape of the crystal produced. (Use a coloured pencil)

Activity 6.2 step two: crystallisation

1. Read Page 84 Starting Science Book 2 & answer Questions 1 to 4. 2. Read Page 85 about “Crystallisation” & answer questions 1 to 5.

Sodium chloride (salt) crystal made up of billions of sodiums

and chlorides stuck together

Gold is made up of billions of gold

atoms stuck together

Page 26: S2 Chemistry materials - LT Scotland

26

7. mixtures

Mixtures can be made up of:

Write down the substances that make up the following mixtures. The first one has been done for you 1. Mayonnaise - a liquid in a liquid (oil in water) 2. Chocolate chip cookies 3. Cornflakes in milk 4. Air freshener 5. Dirty snow 6. Smog 7. Brass 8. “Lynx” deoderant 9. Sugary tea 10. Oil slick

solid in a solid

eg MUESLI

gas in a solid eg PUMICE STONE

solid in a gas

eg SMOKE

gas in a gas

eg AIR

liquid in a gas

eg CLOUDS

soluble solid in a liquid

eg SALT WATER

liquid in a liquid

eg MILK (emulsion)

insoluble solid in a liquid

eg MUDDY WATER

Mixtures contain different substances jumbled up together. Mixtures can be separated again by methods such as sieving, filtering, evaporating etc.

gas in a liquid

eg OXYGEN IN

WATER

Page 27: S2 Chemistry materials - LT Scotland

27

Separation processes

insert

handout 6

here

Page 28: S2 Chemistry materials - LT Scotland

28

Evaporation separates a soluble solid from a liquid.

separating mixtures: evaporation There are about 35 kilograms of salt in every cubic metre of sea water! Hot desert countries get the salt by leaving the sea water in shallow pools. The heat from the baking sun evaporates the water leaving the salt crystals behind.

Activity 7.1 salt crystals

forming

very hot solution

water evaporating

Explain in detail how you could recover all of the dissolved sugar shown left.

“Oh no! All the sugar’s dissolved in the wet bowl”

1. Put 50cm3 of water into a beaker.

2. Add one spatulaful of salt. Stir until all the solute is dissolved

3. Repeat Step 2 until no more will dissolve. You have now made a saturated salt solution.

4. Pour the contents of the beaker into an evaporating basin. 5. Heat the basin until only a small amount of liquid remains. 6. Turn the Bunsen off. Wait and watch what happens. 7. Once the basin has cooled down, collect your salt crystals.

Sea water pumped into shallow pool

Sun evaporates water leaving salt crystals

Salt scraped from bottom of pool

Page 29: S2 Chemistry materials - LT Scotland

29

The previous experiment enabled us to obtain solid salt from sea water. However, in many countries, it is much more important to get pure water from poisonous sea water.

separating mixtures: distillation

Humans can live for weeks without eating food but can only last a few days without water. All living things have a lot of water in them. We lose a lot of water by sweating, breathing and going to the toilet. Half of this water is replaced by the food we eat. The rest has to be replaced by the water we drink.

Our drinking water comes from the tap. But in parts of the world drinking water is difficult to find. The planet is covered by 75% of water but this cannot be drunk because there is so much salt dissolved in it. The set-up below shows how to get pure water from salty seawater.

Distillation separates a solvent from a solution.

70% water

1

2

3

4

Activity 7.2 : teacher demonstration When the solution (sea water) is heated, the water evaporates. The hot water vapour (steam) passes through the delivery tube.

It is then cooled down using a cold wet glass cylinder called a condenser.

The water vapour cools down and condenses, trickling out. The salt does not evaporate. It is left behind as a solid in the flask.

1

2

3

4

“Arrgh! Water, water everywhere but not a drop to drink!”

Explain how you could turn poisonous seawater into fresh drinking water

“distillation”

Page 30: S2 Chemistry materials - LT Scotland

30

beaker

clamp stand

filter funnel

filter paper

Filtration is a separation process in which a mixture is passed through a filter. One substance passes through this filter barrier but the other one is blocked. Filtration sorts by size. Smaller particles go through but larger particles get trapped. Examples being a colander separating spaghetti from water and a coffee filter trapping coffee beans while water passes through.

Filtration is used to separate an insoluble solid from a liquid

separating mixtures: filtration

You will make your own insoluble solid. Then you will separate this new solid from the solution.

Activity 7.3

“Ugh! There’s mud in this drinking water”

“Hoi! There’s glass in my soup!”

Explain in detail how you would solve the two problems shown left.

1. Measure 20cm3 of potassium iodide solution into a 100cm3 beaker.

2. Add 20cm3 of lead nitrate solution to the same beaker.

3. Stir this mixture well.

4. Set up the apparatus as shown right.

5. Transfer small amounts of the mixture into the filter funnel very carefully.

6. Repeat Step 5 until the beaker is empty.

7. Write an account of your experiment using the headings Aim, Method & Results.

Filtration can be used to also separate a solid from a gas. Pollen or dust can be removed by using an air filter like the ones found in cars or a simple mask that covers your nose and mouth.

“ filtration”

Page 31: S2 Chemistry materials - LT Scotland

31

6. Allow the water level to move up the paper. 7. Remove it when the water has moved up about 3/4 the height of the paper.

separating mixtures: chromatography A prism separates sunlight into many different colours - it forms a rainbow. Like sunlight, chemical mixtures can also be separated into the parts that make them up. This process is called paper chromatography. Chromatography is a superb technique used in: Forensic science (for identifying samples taken from crime scenes), Pollution monitoring (for unknown pollutants in air and water samples), Studying complex mixtures (in food, perfume, oil and drug production) A big advantage is that only tiny samples and low concentrations are needed.

Separating dissolved solids The solids found in mixtures such as food colourings, plant dyes and inks in coloured pens can be separated. Your task is to find out which colours make up black ink in a coloured pen.

Chromatography separates dissolved substances from one another.

Activity 7.4

2. Using a pencil, draw a faint line across the paper 2cm from the bottom of the paper. 3. Add a spot of ink to the paper.

8. Write an account of your experiment using the headings Aim, Method & Results.

One of those blue cars has bumped into mine! It has left a blue streak on my car. Explain in detail how I could find out which car was to blame .

“chromatography*”

1. Measure 10cm3 of water using a measuring cylinder. Add the water to a 100cm3 beaker

4. Attach the paper to a wooden splint so that it stands up in the beaker.

5. Carefully put the paper into the beaker of water.

Page 32: S2 Chemistry materials - LT Scotland

32

8.global warming: the greenhouse effect Air is also a mixture of different gases. The main ones are Nitrogen (78%), Oxygen (21 %) and Argon (almost 1 %) and a tiny amount of carbon dioxide, CO2.

CO2 is very important to green plants which absorb CO2 together with water and energy from sunlight to make their own food. So do the plants use up all of the CO2? No. Humans and all other animals breathe out CO2 . It is also produced in vast quantities when fossil fuels like petrol, diesel, gas, coal and oil are burned. The destruction of the forests is another reason. Trees, other plants and algae absorb CO2 , but nowhere near as fast as it is now being produced, so CO2 levels in the atmosphere is slowly but steadily increasing.

CO2 in the air keeps the Earth warm. If there was no CO2 then our planet would be very cold, about minus 20OC! It acts like a blanket preventing too much heat being lost from the Earth’s surface. This trapping of heat energy is called the ‘Greenhouse Effect’. Temperatures around the world are now rising steadily. This may be due to the rise in CO2

levels and is known as ‘Global Warming’.

Global warming doesn’t mean that everywhere would become hotter. Some places would actually become colder. Some would get wetter and others drier. Extreme events such as heavy rains and droughts are expected. The level of the seas will rise because wa-ter expands as it gets hotter and also because of the ice at the poles will melt. There may be more hurricanes, typhoons and cyclones. A single result could help some people but at the same time be harmful to others. For example fish might shift to new warmer breeding grounds giving fishing boats better catches but others poorer ones. Crops could grow in areas that were once too cold but die off in lands that are now too hot.

Questions 1. Why do plants need carbon dioxide? 2. Give some ways that CO2 is put into the atmosphere. 3. Explain why CO2 levels are increasing steadily. 4. What would be the surface temperature of the Earth if no CO2 was present? 5. What is the a) Greenhouse effect and b) Global warming? 6. List ten effects caused by Global warming. 7. Global warming can only be controlled if all the countries of the world agree to do something about it. a) Why is this? b) Some countries produce more CO2 than others. Name four countries that you think are major producers of greenhouse gases such as CO2.

nitrogen oxygen

argon

AIR

bill nye “melting of

ice-caps”

Page 33: S2 Chemistry materials - LT Scotland

33

Global Warming

insert

handout 7

here

Page 34: S2 Chemistry materials - LT Scotland

34

Page 35: S2 Chemistry materials - LT Scotland

35

Page 36: S2 Chemistry materials - LT Scotland

36

Page 37: S2 Chemistry materials - LT Scotland

37


Recommended