+ All Categories
Home > Documents > Scuola di Dottorato di Ricerca in Fisica Ciclo XXIII

Scuola di Dottorato di Ricerca in Fisica Ciclo XXIII

Date post: 25-Feb-2016
Category:
Upload: dawson
View: 39 times
Download: 2 times
Share this document with a friend
Description:
TeV Observations of blazars and constraints on their redshift a detailed study of PG 1553+113 and PKS 1424+240 with MAGIC . Scuola di Dottorato di Ricerca in Fisica Ciclo XXIII. Direttore della Scuola : Prof. Attilio Stella Supervisore : Prof. Mosè Mariotti - PowerPoint PPT Presentation
Popular Tags:
96
TeV Observations of blazars and constraints on their redshift a detailed study of PG 1553+113 and PKS 1424+240 with MAGIC SCUOLA DI DOTTORATO DI RICERCA IN FISICA CICLO XXIII DIRETTORE DELLA SCUOLA: PROF. ATTILIO STELLA SUPERVISORE: PROF. MOSÈ MARIOTTI CORRELATORE: DOTT. FABRIZIO TAVECCHIO DOTTORANDA: ELISA PRANDINI Padova, March 16 th 2011
Transcript

TeV Observations of blazars and constraints on their redshift: a detailed study of PG 1553+113 and PKS 1424+240 with MAGIC

TeV Observations of blazars and constraints on their redshift

a detailed study of PG 1553+113 and PKS 1424+240 with MAGIC

Scuola di Dottorato di Ricerca in FisicaCiclo XXIIIDirettore della Scuola: Prof. Attilio StellaSupervisore: Prof. Mos MariottiCorrelatore: Dott. Fabrizio Tavecchio

Dottoranda: Elisa Prandini

Padova, March 16th 2011

OutlineIntroduction: VHE gamma ray astrophysics The Physics case: gamma rays from Active Galactic NucleiMAGIC Observations5 years of PG 1553+113 dataThe source PKS 1424+240Constraints on blazars distancesLimits on the redshiftsA new empirical methodConclusions and Outlook

1The Physics Case: VHE g-rays2Very High Energy g-rays: E > 100 GeV [TeV regime]The Physics Case: VHE g-raysPropagate from cosmological distances:From their interactions cosmology

Ideal messengers of non thermal processes in the UniverseNeutrality

2

Very High Energy g-rays: E > 100 GeV [TeV regime]The VHE gamma-ray sky

3

The VHE gamma-ray sky: Extragalactic ComponentAll but two sources are Active Galactic Nuclei!4Active Galactic Nuclei: the most powerful accelerators

Supermassive black holes (109 solar masses)Are probably at the center of every galaxyIn some cases (radio loud AGNs) there are two narrow jets of particlesThe emitted spectrum is a superposition of several components5Active Galactic Nuclei: the most powerful accelerators Supermassive black holes (109 solar masses)Are probably at the center of every galaxyIn some cases (radio loud AGNs) there are two narrow jets of particlesThe emitted spectrum is a superposition of several components

5The observed radiation depends on the viewing angle Radio galaxiesBlazars FSRQBL Lac Objects

Radio Loud AGNs: Unified Scheme6 Radio galaxiesBlazars FSRQBL Lac Objects

The observed radiation depends on the viewing angleRadio Loud AGNs: Unified Scheme6The blazars Spectral Energy Distributionlog(E)nFneV keV MeV GeV TeVSimplified SEDnon thermal and covers the entire e.m. spectrum beaming effectsTwo bumps structure: Synchrotron emission High energy emissionLeptonic models (Inverse Compton)Hadronic models (p0 decay)

711The blazars SED: Mkn 421 a real example

- Clear two bump structure- High variability8The study of VHE gamma rays from blazars: why?A new unexplored regime! Characterize the emitting regionDiscriminate the emission modelsUp to z~0.5: cosmology!

log(E)nFneV keV MeV GeV TeVSimplified SED9The study of VHE gamma rays from blazars: why?log(E)nFneV keV MeV GeV TeVSimplified SED9HOW?A new unexplored regime! Characterize the emitting regionDiscriminate the emission modelsUp to z~0.5: cosmology!

Detection technique: Imaging Atmospheric Cherenkov Telescopes~ 1oCherenkov cone~ 120 m~ 10 kmVHE gamma rayAtmospheric shower (electromagnetic)

Earth atmosphere10Detection technique: Imaging Atmospheric Cherenkov Telescopes~ 1oCherenkov cone~ 120 m~ 10 km

VHE gamma rayAtmospheric shower (electromagnetic)

Earth atmosphere10Background

ImagesSignal[Gamma-like]

1117IACTs in the world

MAGICH.E.S.S.VERITAS

12The MAGIC Telescopes

SIGNAL TRANSPORTIPEIPEIPECENETACQUISITION SYSTEMMIRRORS

STRUCTURE CAMERA13

The MAGIC TelescopesEnergy threshold 60 GeVEnergy Resolution ~20%FOV 3.5oAngular Resolution ~0.1oSensitivity (5 s in 50 hours) ~1% Crab Nebula flux (> 100 GeV)

MAGIC I (2004)MAGIC II (2009)14OutlineIntroduction: VHE gamma ray astrophysics The Physics case: gamma rays from Active Galactic NucleiMAGIC Observations of AGNs5 years of PG 1553+113 dataThe source PKS 1424+240Constraints on blazars distancesLimits on the redshiftsA new empirical methodConclusions and Outlook

15The blazarsPG 1553+113 & PKS 1424+240 Is a well known TeV emitterObserved by MAGIC since 2005My analysis: from 2007 to 2009 (only M1)Is a new detected TeV emitterObserved by MAGIC since 2006, detected in 2009My analysis: 2009 (M1) and 2010 (stereo) data analysis Both sources have unknown/uncertain distance (redshift)16The blazarsPG 1553+113 & PKS 1424+240 Is a well known TeV emitterObserved by MAGIC since 2005My analysis: from 2007 to 2009 (only M1)Is a new detected TeV emitterObserved by MAGIC since 2006, detected in 2009My analysis: 2009 (M1) and 2010 (stereo) data analysis Both sources have unknown/uncertain distance (redshift)16The blazarsPG 1553+113 & PKS 1424+240Both sources have uncertain/unknown distance (redshift)Is a new detected TeV emitterObserved by MAGIC since 2006, detected in 2009My analysis: 2009 (M1) and 2010 (stereo) data analysis Is a well known TeV emitterObserved by MAGIC since 2005My analysis: from 2007 to 2009 (only M1)16z > 0.09 [VLT no lines, Sbarufatti et al. 2006a]z > 0.78 [HST, Sbarufatti et al. 2006b]z > 0.25 [HST, new method for gal. magnitude, Treves et al. 2007]0.4 < z < 0.58 [ISM-IGM lines, Danforth et al. 2010]z < 0.58 [TeV, Mazin & Goebel 2007, E.P. et al. 2009]

Largely uncertain:z > 0.06 [PG, Falomo & Scarpa 1995]z > 0.67 [HST, Sbarufatti et al. 2005]PG 1553+113 PKS 1424+240The Distance17

Falomo & Scarpa 1995

Treves et al. 2007PG 1553+113: data analysis and resultsSignal SearchSpectral AnalysisTime AnalysisMultiwavelength View of the SourceSpectral Energy Distribution (SED)

18PG 1553+113: data analysis and results200720082009A clear signal every year

2007 (11.5 hrs): 5.8 s2008 (8.7 hrs): 8.1 s2009 (8.5 hrs): 4.2 s Signal Search

18The MAGIC CollaborationSubmitted to ApJPG 1553+113: data analysis and resultsSignal SearchSpectral AnalysissDifferential energy spectrum

dN/dE = F0 (E/E0)-G YearGF (> 150 GeV)[Crab %]20074.1 0.34 % 1%20084.3 0.311% 1%20093.4 0.55% 1% (Crab Nebula G~2.5)19The MAGIC CollaborationSubmitted to ApJPG 1553+113: data analysis and resultsSignal SearchSpectral AnalysisTime AnalysisOne of the best followed TeV sourcesYearly variations (4%- 11% Crab flux) No clear intra-year variations20The MAGIC CollaborationSubmitted to ApJMultiwavelength PG 1553+11321The MAGIC CollaborationSubmitted to ApJPG 1553+113: data analysis and resultsSignal SearchSpectral AnalysisTime AnalysisMultiwavelength View of the SourceSpectral Energy Distribution (SED)

22Spectral Energy Distribution

Model Parameters

B = 0.5 G R ~1016 cm- Lr= 6 x 1044 erg/s

Assumption: z=0.4All the results are in agreement with the leptonic model!23The MAGIC CollaborationSubmitted to ApJSpectral Energy Distribution

Model Parameters

B = 0.5 G R ~1016 cm- Lr= 6 x 1044 erg/s

Assumption: z=0.4All the results are in agreement with the leptonic model!The MAGIC CollaborationSubmitted to ApJ23Signal SearchSpectral AnalysisTime AnalysisSpectral Energy Distribution (SED)

PKS 1424+240: data analysis and results2420092010 (stereoscopic data)Signal Search

PKS 1424+240: data analysis and results- 2009 (13 hrs): 4.2 s DISCOVERY of the source at TeV (together with VERITAS)! 2010 (16.6 hrs): 5.75 s past MAGIC observations: no signal--ATel #2098--24Signal SearchSpectral Analysis

PKS 1424+240: data analysis and resultsYearGF (> 150 GeV)[Crab %]20094.0 1.36.2 % 2.0%20103.5 0.81.2% 0.5%25Individual years specraMean spectrumThe MAGIC CollaborationPaper in preparationSignal SearchSpectral AnalysisTime Analysis

PKS 1424+240: data analysis and resultsResults: Monthly variations in 2009 Year variations

the source is highly variable (typical of BL Lacs)26The MAGIC CollaborationPaper in preparationSignal SearchSpectral AnalysisTime AnalysisSpectral Energy Distribution (SED)

PKS 1424+240: data analysis and resultsdistance of the source?

27OutlineIntroduction: VHE gamma ray astrophysics The Physics case: gamma rays from Active Galactic NucleiMAGIC Observations of AGNs5 years of PG 1553+113 dataThe source PKS 1424+240Constraints on blazars distancesLimits on the redshiftsA new empirical methodConclusions and Outlook

28

xxxVHE photons absorption by the Extragalactic Background LightVHE photon + diffuse light electron-positron pairs productionVHEEBL e+e-29Absorption:

dF/dEobs= (dF/dEem) e-t 40

EBL SEDVHE photon + diffuse light electron-positron pairs productionVHE photons absorption by the Extragalactic Background Light29Hauser and Dwek (2001)VHEEBL e+e-41VHE photon + diffuse light electron-positron pairs productionLarge uncertainties!VHE photons absorption by the Extragalactic Background Light29Dominguez et al. (2011)VHEEBL e+e-42

z = 0.003z = 0.01z = 0.03z = 0.1z = 0.3z = 0.5z = 1g-g opacityOur range of observations30Absorption:

dF/dEobs= (dF/dEem) e-t EBL ModelFranceschini et al. (2008)

z = 0.003z = 0.01z = 0.03z = 0.1z = 0.3z = 1Strong suppression

z = 0.530g-g opacityAbsorption:

dF/dEobs= (dF/dEem) e-t EBL ModelFranceschini et al. (2008)EBL absorption effect31

EBL model:Franceschini et al. (2008)The effect of EBL on blazars spectraThe absorption is related to the distance of the source

EBL: the EMITTED spectrum is deformed

32log(E)eV keV MeV GeV TeVSEDnFn46log(E)eV keV MeV GeV TeVSEDConstraints from the absorption EBL modelHypotheses on the intrinsic spectrumBlazar distance33nFnlog(E)eV keV MeV GeV TeVSEDConstraints from the absorption EBL modelHypotheses on the intrinsic spectrumBlazar distance33nFnMy workConstraints on blazars distances

Abdo et al. (2010)We propose to use the lower energy slope as limiting slope for the TeV de-absorbed spectrum in order to set a limit on the source distance

34EP, Bonnoli G.,Maraschi L.,Mariotti M. & Tavecchio F., MNRAS 405,2010,L7649Constraints on blazars distances

Abdo et al. (2010)Below 100 GeV: Fermi/LAT measure (launched in 2008)

We propose to use the lower energy slope as limiting slope for the TeV de-absorbed spectrum in order to set a limit on the source distance

34EP, Bonnoli G.,Maraschi L.,Mariotti M. & Tavecchio F., MNRAS 405,2010,L7650z*: an upper limit on the distanceOnce assumed an EBL model:

z* : GTeV(deab) = GGeV34EP, Bonnoli G.,Maraschi L.,Mariotti M. & Tavecchio F., MNRAS 405,2010,L76

Abdo et al. (2010)

Results: upper limits on the distances of PG 1553+113 and PKS 1424+240In agreement with previously estimated limitsz* = 0.71 0.08z* = 0.45 0.15In agreement with previously estimated limits(VERITAS SPECTRUm)EP et al. accepted forPublication in POS 35A step further: from limits to estimatesHOW?

Test on known distances sources:Fermi TeV sources + TeV spectra from last generation of Cherenkov Telescopes16 sources with known redshift 2 sources of uncertain redshift (S5 0716+714 and 3C 66A)3653Results: z* VS ztrueAll the limits (z*) are above the bisector

Open points: uncertain redshiftThe slope measured at low energies (0.1 100 GeV) can be used as a LIMIT on the VHE slope for constraining the REDSHIFT of a source

bisectorz*37ztrue54Linear RelationIs there any relation among z* and ztrue?

Following previous works:

linear expression for the steepening of the observed TeV slope

z* is also related to the steepening: LINEAR RELATION

Linear fit:z* = A + B ztruez*38EP, Bonnoli G.,Maraschi L.,Mariotti M. & Tavecchio F., MNRAS 405,2010,L76ztrue55Reconstructed redshiftWe can use the fit to estimate the redshift of a source (and not only to set a limit)zrec= (z* - A)/Bz*39ztrue56Test on known distances blazarsDz#Residuals distribution: Dz = (ztrue- zrec)

Sigma of the Gaussian fit: s = 0.054057Test on known distances blazarsResiduals distribution: Dz = (ztrue- zrec)

Sigma of the Gaussian fit: s = 0.05Dz# error on the reconstructed redshift4058Systematics EBL model Not simultaneous data Different instruments [i.e. energy threshold] Nature of the source

4159Conclusions: the distance of PKS 1424+24042EBL ModelFermi CatalogFermi slopez*zul (2 s)z recKneiske5.5 months1.85 0.050.50 0.160.820.24 0.04Franceschini5.5 months1.85 0.050.45 0.100.750.24 0.04Stecker5.5 months1.85 0.050.28 0.080.440.25 0.04Franceschini1 year1.83 0.030.45 0.150.750.26 0.05Dominguez1 year1.83 0.030.45 0.150.750.26 0.05EP, Bonnoli G.,Maraschi L.,Mariotti M. & Tavecchio F., PoS, submitted60Conclusions: the distance of PKS 1424+240EBL ModelFermi CatalogFermi slopez*zul (2 s)z recKneiske5.5 months1.85 0.050.50 0.160.820.24 0.04Franceschini5.5 months1.85 0.050.45 0.100.750.24 0.04Stecker5.5 months1.85 0.050.28 0.080.440.25 0.04Franceschini1 year1.83 0.030.45 0.150.750.26 0.05Dominguez1 year1.83 0.030.45 0.150.750.26 0.05Almost independent from the EBL model considered!

Estimated Redshift:zrec = 0.26 0.05

42EP, Bonnoli G.,Maraschi L.,Mariotti M. & Tavecchio F., PoS, submitted61Conclusions: the distance of PKS 1424+240This is the first estimate on this source distance!Estimated Redshift:zrec = 0.26 0.05

42EBL ModelFermi CatalogFermi slopez*zul (2 s)z recKneiske5.5 months1.85 0.050.50 0.160.820.24 0.04Franceschini5.5 months1.85 0.050.45 0.100.750.24 0.04Stecker5.5 months1.85 0.050.28 0.080.440.25 0.04Franceschini1 year1.83 0.030.45 0.150.750.26 0.05Dominguez1 year1.83 0.030.45 0.150.750.26 0.05EP, Bonnoli G.,Maraschi L.,Mariotti M. & Tavecchio F., PoS, submitted62Conclusions: the distance of PKS 1424+240

Estimated Redshift:zrec = 0.26 0.05

42The MAGIC Collaboration paper, in preparationConclusions:the distance of PG 1553+113Estimated Redshift:

zrec = 0.43 0.05 in agreement with both upper and lower limits from other studies!EBL ModelFermi CatalogFermi slopez*zul (2 s)z recFranceschini1 year1.66 0.030.70 0.080.860.44 0.05Dominguez1 year1.66 0.030.71 0.080.870.43 0.05

43EP et al. in preparationFinal RemarksConclusionsDetailed analysis of two TeV blazarsDevelopment of a new phenomenological law relating GeV and TeV spectra to the blazars distancesEstimate of PG 1553+113 and PKS 1424+240 distancesOutlookPerform coordinated MWL campaigns Apply the law to other sources: many new TeV sources with unknown/uncertain redshift have been discoveredReduce the systematics44

Thank you!Bibliography

PART I: - PG 1553+113: MAGIC Collaboration (E.P. among corresponding authors) ApJ submitted- PKS 1424+240: MAGIC Collaboration (E.P. among corresponding authors) in preparation PART II: - E.P. et al., 31st ICRC (arXiv:0907.0157)- E.P. et al., MNRAS, 405, L76-L80 (2010) - E.P. et al., SciNeGHE 2010, accepted (arXiv:1101.4098)- E.P. et al., MCoS, accepted (arXiv:1101.5005)

Thank you!Backup slides68Radio Loud AGNs: energy budgetTypical Luminosity: L 1047 erg s-1 = 1040 W

Luminosity Components:

AccretionEjection

6Blazars SED: beaming effects Collimation (sinq=1/g)Time: Dtobs= Dtem/dEnergy: nobs = d nemLuminosity: Lobs = dp Lem

Rs < cDtvar / (1+z)70log(E)nFneV keV MeV GeV TeVSimplified SED= Doppler factor, ~10p ~ 470Cherenkov light spectrum

71Detection technique

72MAGIC CameraM1: 377 0.1o PMTs, 180 0.2o M2: 1039 0.1o PMTsQE ~ 30%73

MAGIC Trigger Multi-level:L0: thresholdL1: temporal and spatial coincidence (topology) L2: topological constraints to the images (flag mode)L3: stereo coincidence74MAGIC Sensitivity

75PG 1553+113: Optical-TeV correlation21Probability 76%SSC Model (PG 1553+113)

77Signal SearchSpectral AnalysisTemporal AnalysisMwl view

PKS 1424+240: data analysis and resultsResults:High state in 2009 also in optical and X-rays Not conclusive correlation studies: more coverage needed78Blazar observed spectrumIngredients

EBL modelBlazar emitted spectrumBlazar distanceMy work33EBL Measurements Direct PB: zodiacal dust and other foregrounds IndirectSource number countsOpacity to TeV photonsStatistical analysesStacking techniqueFluctuation technique80

Chary & Pope 2010EBL Models (following Dominguez et al 2010)Forward evolutionAssume determined cosmological conditions in the past as a starting point Backward evolutionEvolution of existing galaxies backward in timeInferred galaxy evolutionStarts from observed quantities (i.e. star formation rate)Observed Galaxy evolution Observed galaxy evolution81Absorption coefficient

82cosmologycross sectionEBL model

Opacity: models Comparison

83EBL absorption effect

84old criteriaMax slope -1.5 standard scenario (Aharonian et al. 2006)0.67 extreme model (Katarzynski et al. 2006)

No third peak at high energies

85

Spectral break Fermi TeV sources (from Abdo et al. 2009) + TeV spectra from last generation of Cherenkov Telescopes (MAGIC, VERITAS, H.E.S.S.)14 sources with well known redshift 2 sources of uncertain redshift (S5 0716+714 and 3C 66A)

Spectral breakHEVHE (observed)86EP, Bonnoli G.,Maraschi L.,Mariotti M. & Tavecchio F., MNRAS 405,2010,L7686Comparison between different EBL ModelsSimilar results with extreme EBL models:Low EBL: Kneinske & Dole 2010Mean EBL: Franceschini et al. 2008High EBL: Stecker et al. 2006

87Linear fit has a probability of ~60%87Results: z* VS ztrue in LINEAR SCALE88

88SourceztrueG (0.1-100 GeV)z*zrecMkn 4210.0301.81 0.020.07 0.020.02 0.05Mkn 5010.0341.85 0.040.07 0.02 0.02 0.051ES 2344+5140.0441.57 0.170.18 0.03 0.09 0.05Mkn 1800.0451.86 0.110.20 0.11 0.11 0.051ES 1959+6500.0472.09 0.050.07 0.030.02 0.05BL Lacertae0.0692.37 0.04 0.26 0.150.14 0.05PKS 2155-4890.0711.90 0.060.18 0.030.09 0.05W Comae0.1022.06 0.040.23 0.050.13 0.05PKS 2155-3040.1161.91 0.020.21 0.010.11 0.05RGB J0710+5910.1251.28 0.210.20 0.060.11 0.051ES 0806+5240.1382.09 0.100.22 0.150.12 0.05H 2356-3090.1652.10 0.170.16 0.070.08 0.051ES1218+3040.1821.70 0.080.20 0.080.11 0.051ES 1101-2320.1861.36 0.580.22 0.100.12 0.051ES 1011+4960.2121.93 0.040.60 0.180.36 0.05S5 0716+7140.310*2.15 0.030.22 0.100.12 0.05PG 1553+1130.4001.66 0.030.75 0.070.45 0.053C 66A0.444*1.92 0.020.38 0.050.22 0.05The Dataset89S5 0716+714

903C 66A

91The VHE g-ray sky: a new field

92Steepening of blazars spectra

93Stecker & Scully, 2010Cosmic Rays

Many open questions:Up to which energies?Antimatter content?Which is their origin? 22

Neutral Messangerapparent sourcedirection Charged particleCRsourceCosmic Rays originUHECR (E>1018eV)Cosmic RaysMany open questions:Up to which energies?Antimatter content?Which is their origin?

UHECRsNeutral Messangers:

Neutrinos Gamma-rays

2

] [_0 10 20 30 40 50 60 70 80 90

even

tsN

1000

2000

3000

4000

5000

6000

7000

8000

173.5 Non = 30098.0 169.4 Noff measured (Normalized) = 28698.0

242.5 Nex (ON - OFF measured) = 1400.0 Significance = 5.77, Nex/(Nbg*NormFactor) = 0.05

] [_0 10 20 30 40 50 60 70 80 90

even

tsN

0

200

400

600

800

1000

60.7 Non = 3688.0 32.4 Noff measured (Normalized) = 3146.0

68.8 Nex (ON - OFF measured) = 542.0 Significance = 8.09, Nex/(Nbg*NormFactor) = 0.17

] [_0 10 20 30 40 50 60 70 80 90

even

tsN

100

200

300

400

500

600

700

45.3 Non = 2048.0 24.7 Noff measured (Normalized) = 1835.3

51.6 Nex (ON - OFF measured) = 212.7 Significance = 4.20, Nex/(Nbg*NormFactor) = 0.12

Energy [GeV]210

]-1 T

eV-1

s-2

dN/

dE [c

m

-1410

-1310

-1210

-1110

-1010

-910

-810

20072008 2009Crab Flux (Albert et al. 2008a)

2005 2006 2007 2008 2009

Time [MJD]53500 54000 54500 55000

]-1 s-2

[cm

-11

F(E>

150

GeV)

x 10

0

5

10

-11F(

E>15

0 GeV

)x10

]-1 s-2[cm

F (R

band

)[m

Jy]

X-RA

YS C

ounts

rate ]-1

[0.3-1

0 keV

s

-6 F(

E>1 G

eV)x1

0 ]-1 s-2

[cm

Time [MJD]

2005 2006 2007 2008 2009

0

5

10VHE gamma-rays (MAGIC)

5

10

15 Optical (KVA+Tuorla)

2

4 X-rays (Swift/XRT)

53500 54000 54500 55000

0

0.02

0.04HE gamma-rays (Fermi/LAT)

2e0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

even

tsN

0

200

400

600

800

1000

1200

1400

1600

1800 88.4 Non = 7812.0 49.6 Noff measured (Normalized) = 7394.0

101.4 Nex (ON - OFF measured) = 418.0 Significance = 4.16, Nex/(Nbg*NormFactor) = 0.06

2e0 0.1 0.2 0.3 0.4

even

tsN

0

200

400

600

800

1000

1200

1400

1600Time = 16.65 h

46.0 = 2203.0 off

= 2597; NonN = 394.0exN

mSignificance (Li&Ma) = 5.75

Energy [GeV]210

]-1 T

eV-1

s-2

dN/

dE [c

m

-1210

-1110

-1010

-910 2009 (mono)2010 (stereo)

Energy [GeV]210

]-1 T

eV-1 s

-2 d

N/dE

[cm

-1210

-1110

-1010

-910 MAGIC 2009/10VERITAS 2009

Time [MJD]54880 54900 54920 54940 54960 54980 55000

]-1 s-2

[cm

-11

F (>

150

GeV

) x 1

0

1

2

3

4

5

6

7

MAGIC

VERITAS

Time [MJD]55270 55275 55280 55285 55290 55295 55300 55305

]-1 s-2

[cm

-11

F (>

150

GeV

) x 1

0

0.5

1

1.5

2

2.5

MAGIC 2009

VERITAS 2009

MAGIC 2010

0.1 1 10 100 1000 [m]

1

10

100I [nWm2sr1]

this workFranceschini+ 08Gilmore+ 10Aharonian+ 06Mazin & Raue 07 - realisticMazin & Raue 07 - extremeAlbert+ 08Schlegel+ 98Hauser+ 98Finkbeiner+ 00Lagache+ 00Gardner+ 00Gorjian+ 00Cambresy+ 01Madau & Pozzetti 01Metcalfe+ 03Chary+ 04Fazio+ 04; Franceschini+ 08Xu+ 05Matsumoto+ 05Frayer+ 06Bernstein+ 07Levenson & Wright 08Matsuura+ 10Hopwood+ 10Bethermin+ 10Berta+ 10Keenan+ 10

truez-110

z*

-110

1

truez-110

z*

-110

1

truez-110

z*

-110

1

z6-0.3 -0.2 -0.1 0 0.1 0.2 0.3

#

0

1

2

3

4

5

6

7

8

z6-0.3 -0.2 -0.1 0 0.1 0.2 0.3

#

0

1

2

3

4

5

6

7

8

F[Jy]0.008 0.01 0.012 0.014 0.016

]-1 s-2

F >

150

GeV

[cm

-10

0

10

20

30

40

50

60

70

80-1210

-11F (

E >

150 G

eV) x

10]-1 s

-2[cm

F (R

band

)[m

Jy]

X-RA

YS C

ounts

rate ]-1

[0.3-1

0 keV

s

Time [MJD]

2006 2007 2008 2009 2010

0

2

4

6 -rays (MAGIC)aVHE

5

10 Optical (KVA + Tuorla)

53800 54000 54200 54400 54600 54800 55000 55200 55400

0.5

1

1.5

2X-rays (Swift/XRT)

0.1 1 10 100 1000 [m]

1

10

100I [nWm2sr1]

this workFranceschini+ 08Gilmore+ 10Aharonian+ 06Mazin & Raue 07 - realisticMazin & Raue 07 - extremeAlbert+ 08Schlegel+ 98Hauser+ 98Finkbeiner+ 00Lagache+ 00Gardner+ 00Gorjian+ 00Cambresy+ 01Madau & Pozzetti 01Metcalfe+ 03Chary+ 04Fazio+ 04; Franceschini+ 08Xu+ 05Matsumoto+ 05Frayer+ 06Bernstein+ 07Levenson & Wright 08Matsuura+ 10Hopwood+ 10Bethermin+ 10Berta+ 10Keenan+ 10


Recommended