+ All Categories
Home > Documents > ECE 342 Electronic Circuits Lecture 22 Transistor...

ECE 342 Electronic Circuits Lecture 22 Transistor...

Date post: 03-Aug-2021
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
26
ECE 342 – Jose SchuttAine 1 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois [email protected] ECE 342 Electronic Circuits Lecture 22 Transistor Capacitances
Transcript
Page 1: ECE 342 Electronic Circuits Lecture 22 Transistor Capacitancesemlab.illinois.edu/ece342/notes/Lec_22.pdfECE 342 –Jose Schutt‐Aine 1 Jose E. Schutt-Aine Electrical & Computer Engineering

ECE 342 – Jose Schutt‐Aine 1

Jose E. Schutt-AineElectrical & Computer Engineering

University of [email protected]

ECE 342Electronic Circuits

Lecture 22Transistor Capacitances

Page 2: ECE 342 Electronic Circuits Lecture 22 Transistor Capacitancesemlab.illinois.edu/ece342/notes/Lec_22.pdfECE 342 –Jose Schutt‐Aine 1 Jose E. Schutt-Aine Electrical & Computer Engineering

ECE 342 – Jose Schutt‐Aine 2

Model for general Amplifying Element

Cc1 and Cc2 are coupling capacitors (large) F

Cin and Cout are parasitic capacitors (small) pF

Page 3: ECE 342 Electronic Circuits Lecture 22 Transistor Capacitancesemlab.illinois.edu/ece342/notes/Lec_22.pdfECE 342 –Jose Schutt‐Aine 1 Jose E. Schutt-Aine Electrical & Computer Engineering

ECE 342 – Jose Schutt‐Aine 3

Midband Frequencies

- Coupling capacitors are short circuits

- Parasitic capacitors are open circuits

out in LMB

in g in out L

v R RA Av R R R R

Page 4: ECE 342 Electronic Circuits Lecture 22 Transistor Capacitancesemlab.illinois.edu/ece342/notes/Lec_22.pdfECE 342 –Jose Schutt‐Aine 1 Jose E. Schutt-Aine Electrical & Computer Engineering

ECE 342 – Jose Schutt‐Aine 4

Low Frequency Model- Coupling capacitors are present- Parasitic capacitors are open circuits

1

1

1

1 1 ( )in in in c in

abc g in

g inc

v R v j C Rvj C R RR R

j C

1

1

( )1 ( )

c g ininab in

g in c g in

j C R RRv vR R j C R R

Page 5: ECE 342 Electronic Circuits Lecture 22 Transistor Capacitancesemlab.illinois.edu/ece342/notes/Lec_22.pdfECE 342 –Jose Schutt‐Aine 1 Jose E. Schutt-Aine Electrical & Computer Engineering

ECE 342 – Jose Schutt‐Aine 5

Low Frequency Model

1 221

1 122l l

L out cg in c

define f and fR R CR R C

1

1

/1 /

in lab in

g in l

R jf fv vR R jf f

2

2

/,1 /

lLout ab

L out l

jf fRSimilarly v AvR R jf f

Page 6: ECE 342 Electronic Circuits Lecture 22 Transistor Capacitancesemlab.illinois.edu/ece342/notes/Lec_22.pdfECE 342 –Jose Schutt‐Aine 1 Jose E. Schutt-Aine Electrical & Computer Engineering

ECE 342 – Jose Schutt‐Aine 6

1 2

1 2

/ /1 / 1 /

out in l lL

in g in L out l l

v R jf f jf fROverall gain Av R R R R jf f jf f

1 2

1 2

/ /1 / 1 /

out l lMB

in l l

v jf f jf fAv jf f jf f

Low Frequency Model

Page 7: ECE 342 Electronic Circuits Lecture 22 Transistor Capacitancesemlab.illinois.edu/ece342/notes/Lec_22.pdfECE 342 –Jose Schutt‐Aine 1 Jose E. Schutt-Aine Electrical & Computer Engineering

ECE 342 – Jose Schutt‐Aine 7

Rout = 3 k, Rg=200 , Rin=12 k, RL=10 kCc1 = 5 F and Cc2 = 1 F

1 6

1 2.612 (12,200 5 10 )lf Hz

Example

2 6

1 12.22 (13,000 10 )lf Hz

Page 8: ECE 342 Electronic Circuits Lecture 22 Transistor Capacitancesemlab.illinois.edu/ece342/notes/Lec_22.pdfECE 342 –Jose Schutt‐Aine 1 Jose E. Schutt-Aine Electrical & Computer Engineering

ECE 342 – Jose Schutt‐Aine 8

High Frequency Model- Assume coupling capacitors are short- Account for parasitic capacitors

1th g inR R R

1in in

thg in

v RVR R

Potential Theveninequivalent for input as seen by Cin

Page 9: ECE 342 Electronic Circuits Lecture 22 Transistor Capacitancesemlab.illinois.edu/ece342/notes/Lec_22.pdfECE 342 –Jose Schutt‐Aine 1 Jose E. Schutt-Aine Electrical & Computer Engineering

ECE 342 – Jose Schutt‐Aine 9

1

11

in inab

g in in th

v RvR R j C R

11 1

1 11 / 2

in inab h

g in h th in

v Rv where fR R jf f R C

2

11

ab Lout

out L out th

Av RLikewise vR R j C R

2th out Lwith R R R

22 2

1 11 / 2

ab Lout h

L out h th out

Av Rv where fR R jf f R C

High Frequency Model

Page 10: ECE 342 Electronic Circuits Lecture 22 Transistor Capacitancesemlab.illinois.edu/ece342/notes/Lec_22.pdfECE 342 –Jose Schutt‐Aine 1 Jose E. Schutt-Aine Electrical & Computer Engineering

ECE 342 – Jose Schutt‐Aine 10

1 2

1 11 / 1 /

o in L

i in g L out h h

v R RAv R R R R jf f jf f

1 2

1 11 / 1 /

oMB

i h h

v Av jf f jf f

Overall gain is:

or

High Frequency

Page 11: ECE 342 Electronic Circuits Lecture 22 Transistor Capacitancesemlab.illinois.edu/ece342/notes/Lec_22.pdfECE 342 –Jose Schutt‐Aine 1 Jose E. Schutt-Aine Electrical & Computer Engineering

ECE 342 – Jose Schutt‐Aine 11

Example: Rout = 3 k, Rg=200 , Rin=12 k, RL=10 kCin = 200 pF and Cout= 40 pF

1 10

1 4.052 2 10 (12,200 200)hf MHz

2 12

1 1.722 40 10 (10,000 3,000)hf MHz

64.05 10log 5.52 512.2

decades

Summary: low-frequency < 12.2 Hz, High frequency > 1.72 MHz

Example

Page 12: ECE 342 Electronic Circuits Lecture 22 Transistor Capacitancesemlab.illinois.edu/ece342/notes/Lec_22.pdfECE 342 –Jose Schutt‐Aine 1 Jose E. Schutt-Aine Electrical & Computer Engineering

ECE 342 – Jose Schutt‐Aine 12

Triode region:

Saturation region:

Cutoff:

12gs gd oxC C WLC

23gs oxC WLC 0gdC

0gd gsC C

gb oxC WLC

MOSFET - Gate Capacitance Effect

Page 13: ECE 342 Electronic Circuits Lecture 22 Transistor Capacitancesemlab.illinois.edu/ece342/notes/Lec_22.pdfECE 342 –Jose Schutt‐Aine 1 Jose E. Schutt-Aine Electrical & Computer Engineering

ECE 342 – Jose Schutt‐Aine 13

ov ov oxC WL COverlap capacitance (gate-to-source):

1

sbosb

SB

o

CCVV

1

dbodb

DB

o

CCVV

Body

CSB

CGS CGD CGB

CDB

RG

Gate

DrainSourceRS

MOSFET – Junction Capacitances

Page 14: ECE 342 Electronic Circuits Lecture 22 Transistor Capacitancesemlab.illinois.edu/ece342/notes/Lec_22.pdfECE 342 –Jose Schutt‐Aine 1 Jose E. Schutt-Aine Electrical & Computer Engineering

ECE 342 – Jose Schutt‐Aine 14

22 Dm n ox eff n ox D

eff

W W Ig C V C IL L V

MOSFET High-Frequency Model

2 2mb m mF sb

g g gV

1/ds A DD

r V II

23gs ox ov oxC WLC WL C

gd ov oxC WL C

1

sbosb

SB

o

CCVV

1

dbodb

DB

o

CCVV

Page 15: ECE 342 Electronic Circuits Lecture 22 Transistor Capacitancesemlab.illinois.edu/ece342/notes/Lec_22.pdfECE 342 –Jose Schutt‐Aine 1 Jose E. Schutt-Aine Electrical & Computer Engineering

ECE 342 – Jose Schutt‐Aine 15

nde

BE

dQCdv

BJT Capacitances

Base: Diffusion Capacitance: Cde (small signal)

where Qn is minority carrier charge in base

C Fde F F m

BE T

diC gdv V

where F is the forward transit time (time spent crossing base)

Page 16: ECE 342 Electronic Circuits Lecture 22 Transistor Capacitancesemlab.illinois.edu/ece342/notes/Lec_22.pdfECE 342 –Jose Schutt‐Aine 1 Jose E. Schutt-Aine Electrical & Computer Engineering

ECE 342 – Jose Schutt‐Aine 16

Base-emitter junction capacitance:

1

jeoje m

BE

oe

CC

VV

Cjeo is Cje at 0 V. Voe is EBJ built in voltage ~ 0.9 V

BJT Capacitances

Page 17: ECE 342 Electronic Circuits Lecture 22 Transistor Capacitancesemlab.illinois.edu/ece342/notes/Lec_22.pdfECE 342 –Jose Schutt‐Aine 1 Jose E. Schutt-Aine Electrical & Computer Engineering

ECE 342 – Jose Schutt‐Aine 17

BJT CapacitancesIn hybrid pi model, Cde+Cje=C

Collector-base junction capacitance

1

om

CB

oe

CC

VV

Co is C at 0 V. Voc is CBJ built in voltage ~ 0.9 V

C is around a few tens of pFC is around a few pF

Page 18: ECE 342 Electronic Circuits Lecture 22 Transistor Capacitancesemlab.illinois.edu/ece342/notes/Lec_22.pdfECE 342 –Jose Schutt‐Aine 1 Jose E. Schutt-Aine Electrical & Computer Engineering

ECE 342 – Jose Schutt‐Aine 18

High-Frequency Hybrid- Model

, ,ACm o

T C m

VIg r rV I g

, ,2

mde je de F m

T

gC C C C C C gf

, 0.3 0.5

1

jcom

CB

oe

CC m

VV

2

mT

gfC C

Page 19: ECE 342 Electronic Circuits Lecture 22 Transistor Capacitancesemlab.illinois.edu/ece342/notes/Lec_22.pdfECE 342 –Jose Schutt‐Aine 1 Jose E. Schutt-Aine Electrical & Computer Engineering

ECE 342 – Jose Schutt‐Aine 19

CS - Three Frequency Bands

Page 20: ECE 342 Electronic Circuits Lecture 22 Transistor Capacitancesemlab.illinois.edu/ece342/notes/Lec_22.pdfECE 342 –Jose Schutt‐Aine 1 Jose E. Schutt-Aine Electrical & Computer Engineering

ECE 342 – Jose Schutt‐Aine 20

CE - Three Frequency Bands

Page 21: ECE 342 Electronic Circuits Lecture 22 Transistor Capacitancesemlab.illinois.edu/ece342/notes/Lec_22.pdfECE 342 –Jose Schutt‐Aine 1 Jose E. Schutt-Aine Electrical & Computer Engineering

ECE 342 – Jose Schutt‐Aine 21

o m gs gd gsI g V sC V

Unity-Gain Frequency fTfT is defined as the frequency at which the short-circuit current gain of the common source configuration becomes unity

(neglect sCgdVgs since Cgd is small)

o m gsI g V i

gsgs gd

IVs C C

o m

i gs gd

I gI s C C

s jDefine:

Page 22: ECE 342 Electronic Circuits Lecture 22 Transistor Capacitancesemlab.illinois.edu/ece342/notes/Lec_22.pdfECE 342 –Jose Schutt‐Aine 1 Jose E. Schutt-Aine Electrical & Computer Engineering

ECE 342 – Jose Schutt‐Aine 22

For s=j, magnitude of current gain becomes unity at

2m m

T Tgs gd gs gd

g gfC C C C

fT ~ 100 MHz for 5-m CMOS, fT ~ several GHz for 0.13m CMOS

Calculating fT

Page 23: ECE 342 Electronic Circuits Lecture 22 Transistor Capacitancesemlab.illinois.edu/ece342/notes/Lec_22.pdfECE 342 –Jose Schutt‐Aine 1 Jose E. Schutt-Aine Electrical & Computer Engineering

ECE 342 – Jose Schutt‐Aine 23

C mI g sC v

BJT - Short-Circuit Current Gain

1BIv

sC sCr

Page 24: ECE 342 Electronic Circuits Lecture 22 Transistor Capacitancesemlab.illinois.edu/ece342/notes/Lec_22.pdfECE 342 –Jose Schutt‐Aine 1 Jose E. Schutt-Aine Electrical & Computer Engineering

ECE 342 – Jose Schutt‐Aine 24

Define hfe as short-circuit current gain

1mC

feB

g sCIhI s C C

r

1C m

feB

I g rhI s C C r

at freq. of interestmg sC

BJT - Short-Circuit Current Gain

Page 25: ECE 342 Electronic Circuits Lecture 22 Transistor Capacitancesemlab.illinois.edu/ece342/notes/Lec_22.pdfECE 342 –Jose Schutt‐Aine 1 Jose E. Schutt-Aine Electrical & Computer Engineering

ECE 342 – Jose Schutt‐Aine 25

BJT - Short-Circuit Current Gain

1o

fehs C C r

Define hfe has a single pole (or STC) response. Unity gain bandwidth is for:

1 11 2

m mfe

T

g r gh ors C C r f C C

In some cases, if C is known, then

Page 26: ECE 342 Electronic Circuits Lecture 22 Transistor Capacitancesemlab.illinois.edu/ece342/notes/Lec_22.pdfECE 342 –Jose Schutt‐Aine 1 Jose E. Schutt-Aine Electrical & Computer Engineering

ECE 342 – Jose Schutt‐Aine 26

2m

Tgf

C C

From which we get

2m m

T T

g gC Cf

, m m

T T

g gThus C C C C

BJT - Short-Circuit Current Gain


Recommended