+ All Categories
Home > Documents > EE141- Fall 2001

EE141- Fall 2001

Date post: 18-Apr-2022
Category:
Upload: others
View: 5 times
Download: 0 times
Share this document with a friend
18
EE141 1 EE141 1 Tu-Th 9:30-11am 203 McLaughlin EE141- Fall 2001 Introduction to Digital Integrated Circuits EE141 2 What is this class about? Introduction to digital integrated circuits. » CMOS devices and manufacturing technology. CMOS inverters and gates. Propagation delay, noise margins, and power dissipation. Sequential circuits. Arithmetic, interconnect, and memories. Programmable logic arrays. Design methodologies. What will you learn? » Understanding, designing, and optimizing digital circuits with respect to different quality metrics: cost, speed, power dissipation, and reliability
Transcript
Page 1: EE141- Fall 2001

EE141

1

EE1411

Tu-Th 9:30-11am203 McLaughlin

EE141- Fall 2001Introduction to Digital

Integrated Circuits

EE1412

What is this class about?

� Introduction to digital integrated circuits.» CMOS devices and manufacturing technology.

CMOS inverters and gates. Propagation delay, noise margins, and power dissipation. Sequential circuits. Arithmetic, interconnect, and memories. Programmable logic arrays. Design methodologies.

� What will you learn?» Understanding, designing, and optimizing digital

circuits with respect to different quality metrics: cost, speed, power dissipation, and reliability

Page 2: EE141- Fall 2001

EE141

2

EE1413

Practical Information

� Instructor» Prof. Borivoje Nikolic

570 Cory Hall, 643-9297, [email protected] hours: Mo 10:30-12am, Th 11-12pm

� TAs:» Joshua Garrett» Hangching Fuh, [email protected]» Kevin Cao, [email protected] hours: 353 Cory

� Web page: http://bwrc.eecs.berkeley.edu/Classes/ICDesign/EE141_f01/

EE1414

Discussions and Labs

� Discussion sessions» W 2-3pm, 285 Cory » Tu 2-3pm, 293 Cory Cancelled!» F 9-10am, 409 Davis

� Labs (353 Cory)» Tu 2-5pm -> 3:30-6:30pm» F 11-2pm» W 11-2pm» Th 3-6pm -> 3:30-6:30pm» W 5-8pm

Page 3: EE141- Fall 2001

EE141

3

EE1415

Class Organization

� 10 Assignments� One design project with three phases� Labs: 6 software, 1 hardware� 2 midterms, 1 final

» Midterm 1: Thursday, October 4, evening » Midterm 2: Thursday, November 8, evening» Final: TBA

EE1416

Grading Policy

� Homeworks: 10%� Labs: 10%� Projects: 20%� Midterms: 30%� Final: 30%

Page 4: EE141- Fall 2001

EE141

4

EE1417

Class Material

� Textbook: “Digital Integrated Circuits – A Design Perspective”, by J. Rabaey

� Class notes: Web page + Copy Central (New stuff!)

� Lab Reader:Available on the web page!Selected material will be made available from Copy

Central� Check web page for the availability of tools

EE1418

Software

� MicroMagic» Schematic editor: Sue» Layout editor: Max» Online documentation and tutorials

� HSPICE and IRSIM for simulation

Page 5: EE141- Fall 2001

EE141

5

EE1419

Getting Started

� Assignment 1: Getting SPICE to work –see web-page on Thursday

� NO discussion sessions or labs this week.

� First discussion sessions in Week 2� First Software Lab in Week 2

EE14110

Digital Integrated Circuits

� Introduction: Issues in digital design� The CMOS inverter� Combinational logic structures� Sequential logic gates; timing� Arithmetic building blocks� Interconnect: R, L and C� Memories and array structures� Design methods

Page 6: EE141- Fall 2001

EE141

6

EE14111

Introduction

� Why is designing digital ICs different today than it was before?

� Will it change in future?

EE14112

The First Computer

The BabbageDifference Engine(1832)25,000 partscost: £17,470

Page 7: EE141- Fall 2001

EE141

7

EE14113

ENIAC - The first electronic computer (1946)

EE14114

Intel 4004 Micro-Processor

Page 8: EE141- Fall 2001

EE141

8

EE14115

Intel Pentium (II) microprocessor

EE14116

Moore’s Law

In 1965, Gordon Moore noted that the number of transistors on a chip doubled every 18 to 24 months.

He made a prediction that semiconductor technology will double its effectiveness every 18 months

Page 9: EE141- Fall 2001

EE141

9

EE14117

Moore’s Law16151413121110

9876543210

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

LOG

2 OF

THE

NUM

BER

OF

CO

MPO

NEN

TS P

ER IN

TEG

RATE

D F

UNCT

ION

Electronics, April 19, 1965.

EE14118

Evolution in Complexity

Page 10: EE141- Fall 2001

EE141

10

EE14119

Transistor Counts

1,000,000

100,000

10,000

1,000

10

100

11975 1980 1985 1990 1995 2000 2005 2010

808680286

i386i486

Pentium®Pentium® Pro

K 1 Billion Transistors

Source: Intel

Projected

Pentium® IIPentium® III

EE14120

Moore’s law in Microprocessors

400480088080

8085 8086286

386486 Pentium® proc

P6

0.001

0.01

0.1

1

10

100

1000

1970 1980 1990 2000 2010Year

Tran

sist

ors

(MT)

2X growth in 1.96 years!

Transistors on Lead Microprocessors double every 2 years

S. Borkar

Page 11: EE141- Fall 2001

EE141

11

EE14121

Moore’s Law - Logic Density

�Shrinks and compactions meet density goals�New micro-architectures drop density

Sour

ce: I

ntelPentium (R)

Pentium Pro (R) 486386

i860

1

10

100

1000

1.5µ

1.5µ

1.5µ

1.5µ

1.0µ

1.0µ

1.0µ

1.0µ

0.8µ

0.8µ

0.8µ

0.8µ

0.6µ

0.6µ

0.6µ

0.6µ

0.35

µ0.

35µ

0.35

µ0.

35µ

0.25

µ0.

25µ

0.25

µ0.

25µ

0.18

µ0.

18µ

0.18

µ0.

18µ

0.13

µ0.

13µ

0.13

µ0.

13µ

Logi

c D

ensi

ty

2x trend

Logi

c Tr

ansi

stor

s/m

m2

Pentium II (R)

EE14122

Die Size Growth

40048008

80808085

8086 286386

486Pentium ® procP6

1

10

100

1970 1980 1990 2000 2010Year

Die

siz

e (m

m)

~7% growth per year~2X growth in 10 years

Die size grows by 14% to satisfy Moore’s Law

S. Borkar

Page 12: EE141- Fall 2001

EE141

12

EE14123

Frequency

P6Pentium ® proc

48638628680868085

8080800840040.1

1

10

100

1000

10000

1970 1980 1990 2000 2010Year

Freq

uenc

y (M

hz)

Lead Microprocessors frequency doubles every 2 years

Doubles every2 years

S. Borkar

EE14124

Processor Frequency Trend

386486

Pentium(R)

Pentium Pro(R)

Pentium(R) IIMPC750

604+604

601, 603

21264S

2126421164A

2116421064A

21066

10

100

1,000

10,000

1987

1989

1991

1993

1995

1997

1999

2001

2003

2005

Mhz

1

10

100

Gat

e D

elay

s/ C

lock

IntelIBM Power PCDECGate delays/clock

Processor freq scales by 2X per

generation

� Frequency doubles each generation� Number of gates/clock reduce by 25%

V.De, S. BorkarISLPED’99

Page 13: EE141- Fall 2001

EE141

13

EE14125

Power

P6Pentium ® proc

486386

2868086

808580808008

4004

0.1

1

10

100

1971 1974 1978 1985 1992 2000Year

Pow

er (W

atts

)

Lead Microprocessors power continues to increase

S. Borkar

EE14126

Obeying Moore’s Law…

400480088080

8085 8086286

386486Pentium ® proc

P6

0.001

0.01

0.1

1

10

100

1000

10000

1970 1980 1990 2000 2010Year

Tran

sist

ors

(MT)

900M

1.8B

425M200M

200M--1.8B transistors on the Lead Microprocessor

S. Borkar

Page 14: EE141- Fall 2001

EE141

14

EE14127

Processor Power

386 386

486 486

Pentium(R) Pentium(R) MMX

Pentium Pro (R)

Pentium II (R)

1

10

100

1.5µ1.5µ1.5µ1.5µ 1µ1µ1µ1µ 0.8µ0.8µ0.8µ0.8µ 0.6µ0.6µ0.6µ0.6µ 0.35µ0.35µ0.35µ0.35µ 0.25µ0.25µ0.25µ0.25µ 0.18µ0.18µ0.18µ0.18µ 0.13µ0.13µ0.13µ0.13µ

Max

Pow

er (W

atts

) ?

� Lead processor power increases every generation� Compactions provide higher performance at lower power

Sour

ce: I

ntel

EE14128

Power will be a problem

5KW 18KW

1.5KW 500W

4004800880808085

8086286

386486

Pentium® proc

0.1

1

10

100

1000

10000

100000

1971 1974 1978 1985 1992 2000 2004 2008Year

Pow

er (W

atts

)

Power delivery and dissipation will be prohibitive

S. Borkar

Page 15: EE141- Fall 2001

EE141

15

EE14129

Power density will increase

400480088080

8085

8086

286 386486

Pentium® procP6

1

10

100

1000

10000

1970 1980 1990 2000 2010Year

Pow

er D

ensi

ty (W

/cm

2)

Hot Plate

NuclearReactor

RocketNozzle

Power density too high to keep junctions at low temp

S. Borkar

EE14130

Power delivery challenges

P6Pentium® proc

486386286

8086

80858080

800840040.01

0.10

1.00

10.00

100.00

1,000.00

1970 1980 1990 2000 2010Year

Icc

(am

p)

P6Pentium® proc

486386

286

8086

80858080

80084004

1.E-041.E-031.E-021.E-011.E+001.E+011.E+021.E+031.E+041.E+051.E+061.E+07

1970 1980 1990 2000 2010Year

L(di

/dt)/

Vdd

High supply currents at low voltage:Challenges: IR drop and L(di/dt) noise

S. Borkar

Page 16: EE141- Fall 2001

EE141

16

EE14131

Not Only Microprocessors

Digital Cellular Market(Phones Shipped)

1996 1997 1998 1999 2000

Units 48M 86M 162M 260M 435M Analog Baseband

Digital Baseband(DSP + MCU)

PowerManagement

Small Signal RF

PowerRF

(data from Texas Instruments)

CellPhone

EE14132

Productivity Trends

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

2003

1981

1983

1985

1987

1989

1991

1993

1995

1997

1999

2001

2005

2007

2009

10

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000Logic Tr./ChipTr./Staff Month.

xxxxxx

x21%/Yr. compound

Productivity growth rate

x

58%/Yr. compoundedComplexity growth rate

10,000

1,000

100

10

1

0.1

0.01

0.001

Logi

c Tr

ansi

stor

per

Chi

p(M

)

0.01

0.1

1

10

100

1,000

10,000

100,000

Prod

uctiv

ity(K

) Tra

ns./S

taff

-Mo.

Source: Sematech

Complexity outpaces design productivity

Com

plex

ity

Page 17: EE141- Fall 2001

EE141

17

EE14133

Design Abstraction Levels

n+n+S

GD

+

DEVICE

CIRCUIT

GATE

MODULE

SYSTEM

EE14134

Why Scaling?

� Technology shrinks by 0.7/generation� With every generation can integrate 2x more

functions per chip; chip cost does not increase significantly

� Cost of a function decreases by 2x� How to design chips with more and more functions?� Design engineering population does not double every

two years…� Need to understand different levels of abstraction

Page 18: EE141- Fall 2001

EE141

18

EE14135

This Class

� Introduces basic metrics for design of integrated circuits – how to measure delay, power, etc.

� Groups layout rectangles into transistors and wires» Transistors and wires into gates» Gates into functions

� Need to verify that the assumptions are valid


Recommended