ECE 546 Lecture 02 Review of Electromagneticsemlab.uiuc.edu/ece546/Lect_02.pdfECE 546 –Jose...

Post on 21-Apr-2018

217 views 1 download

transcript

ECE 546 – Jose Schutt‐Aine 1

ECE 546 Lecture 02

Review of ElectromagneticsSpring 2018

Jose E. Schutt-AineElectrical & Computer Engineering

University of Illinoisjesa@illinois.edu

ECE 546 – Jose Schutt‐Aine 2

Printed Circuit Board

ECE 546 – Jose Schutt‐Aine 3

High-Density Package

ECE 546 – Jose Schutt‐Aine 4

Electromagnetic Quantities

E

H

D

B

Electric field (Volts/m)

Magnetic field (Amperes/m)

Electric flux density (Coulombs/m2)

Magnetic flux density (Webers/m2)

J

Current density (Amperes/m2)

Charge density (Coulombs/m2)

ECE 546 – Jose Schutt‐Aine 5

Faraday’s Law of Induction

Ampère’s Law

Gauss’ Law for electric field

Gauss’ Law for magnetic field

BEt

H J D

t

D

0B

Maxwell’s Equations

ECE 546 – Jose Schutt‐Aine 6

B H

D E

Constitutive Relations

Permittivity : Farads/m

Permeability : Henries/m

Free Space128.85 10 /o F m

74 10 /o H m

ECE 546 – Jose Schutt‐Aine 7

Continuity EquationDH Jt

0DH J J Dt t

D

0Jt

ECE 546 – Jose Schutt‐Aine 8

0E

with E

ElectrostaticsAssume no time dependence  0

t

Since 0, such thatE

where is the scalar potentialE

2we get

Poisson’s Equation 2we get

2 0 Laplace’s Equationif no charge is present

ECE 546 – Jose Schutt‐Aine 9

Integral Form of ME

C S

E dl B dSt

C S S

H dl J dS D dSt

S V

D dS dv

0S

B dS

ECE 546 – Jose Schutt‐Aine 10

Boundary Conditions

1 2ˆ 0n E E

1 2ˆ Sn H H J

1 2ˆ Sn D D

1 2ˆ 0n B B

1 1 1 1, , ,E H D B

2 2 2 2, , ,E H D B

ECE 546 – Jose Schutt‐Aine 11

Faraday’s Law of Induction

Ampère’s Law

Gauss’ Law for electric field

Gauss’ Law for magnetic field

oHEt

oEHt

0E

0B

Free Space Solution

ECE 546 – Jose Schutt‐Aine 12

oE Ht

2o o

EE Et t

Wave Equation

22

2o oEEt

Wave Equation

can show that2

22o oHHt

ECE 546 – Jose Schutt‐Aine 13

Wave Equation2 2 2 2

2 2 2 2o oE E E E

x y z t

separating the components

2 2 2 2

2 2 2 2x x x x

o oE E E Ex y z t

2 2 2 2

2 2 2 2y y y y

o o

E E E Ex y z t

2 2 2 2

2 2 2 2z z z z

o oE E E Ex y z t

ECE 546 – Jose Schutt‐Aine 14

Wave Equation Plane Wave

0x y

(a) Assume that only Ex exists  Ey=Ez=0

2 2

2 2x x

o oE Ez t

(b) Only z spatial dependence 

This situation leads to the plane wave solution

In addition, assume a time‐harmonic dependencej t

xE e then jt

ECE 546 – Jose Schutt‐Aine 15

Plane Wave Solution

j zx o

j zx o

E E e forward waveE E e backward wave

solution

where

In the time domain

22

2x

o o xE Ez

o o propagation constant

( ) cos( ) cosx o

x o

E t E t z forward traveling waveE t E t z backward traveling wave

solution

ECE 546 – Jose Schutt‐Aine 16

Plane Wave Characteristics

where

In free space

o o propagation constant

1 v propagation velocity

81 3 10 /o o

v c m s

ECE 546 – Jose Schutt‐Aine 17

HE E j Ht

Solution for Magnetic Field

ˆ j zoE xE e

If we assume that 

ˆ ˆ ˆ1 1

0 0x

x y z

H Ej j x y z

E

then ˆ j zoEH y e

ˆ j zoE xE e

If we assume that  then ˆ j zoEH y e

intrinsic impedance of medium

ECE 546 – Jose Schutt‐Aine 18

( )P t E t H t

Time-Average Poynting Vector

We can show that 

Poynting vector W/m2

time‐average Poynting vector W/m2

0 0

1 1( )T T

P P t dt E t H t dtT T

*1 Re2

P E H

where and are the phasors of ( ) and ( ) respectivelyE H E t H t

ECE 546 – Jose Schutt‐Aine 19

: conductivity of material medium (‐1m‐1)

HEt

EH Jt

J E

Material Medium

E j H

H J j E

1H E j E E j j Ej

2 2 1E Ej

1

j

or

since then

ECE 546 – Jose Schutt‐Aine 20

Wave in Material Medium2 2 21E E E

j

is complex propagation constant

2 2 1j

1j jj

associated with attenuation of wave

associated with propagation of wave

ECE 546 – Jose Schutt‐Aine 21

Wave in Material Medium

ˆ ˆz z j zo oE xE e xE e e

1/22

1 12

decaying exponentialSolution:

1/22

1 12

ˆ z j zoEH y e e

jj

Magnetic field

Complex intrinsic impedance

ECE 546 – Jose Schutt‐Aine 22

Wave in Material Medium1/2

22 1 1pv

Phase Velocity:

0

0

1. Perfect dielectric

Special Cases

Wavelength:1/2

22 2 1 1f

air, free space

and

ECE 546 – Jose Schutt‐Aine 23

Wave in Material Medium2. Lossy dielectric

Loss tangent: 1

2

2 2

318 2

j

2

2 218

2

2 212 8 2

ECE 546 – Jose Schutt‐Aine 24

Wave in Material Medium

3. Good conductors

Loss tangent: 1

j j j

f f

1j f jj

ECE 546 – Jose Schutt‐Aine 25

attenuation

propagation

dp H, E Examples

PEC ‐ 0 0 0 supercond

Good conductor finite copper

Poor conductor finite

Ice

Perfectdielectric 0 finite

air

2

2 1f j

1f

2

/

12

j

2

/

Material Medium

ECE 546 – Jose Schutt‐Aine 26

Radiation - Vector Potential

E j H

H J j E

/D

0B

(1)

(2)

(3)

(4)

Assume time harmonicity ~  j te

ECE 546 – Jose Schutt‐Aine 27

Radiation - Vector Potential

0 such thatB A A B

A

: vector potential

0A

0E j A E j A

Using the property: 0any vector

ECE 546 – Jose Schutt‐Aine 28

0vector vector

where is the scalar potentialE j A

Since a vector is uniquely defined by its curl and its divergence, we can choose the divergence of A

choose such thatA

0A j Lorentz

condition

Vector Potential

ECE 546 – Jose Schutt‐Aine 29

B J j E

A J j j A

2 2A A J A j

2 2A j J A j

2 2A A J

D’Alembert’sequation

Vector Potential

ECE 546 – Jose Schutt‐Aine 30

'

, '4 '

j r reG r rr r

'

'

''

4 '

j r r

V

J r eA r dv

r r

From A, get E and H using Maxwell’s equations

Three-dimensional free-space Green’s function

Vector potential

Vector Potential

ECE 546 – Jose Schutt‐Aine 31

ˆ' ( ') ( ') ( ')oJ r zI dl x y z

For infinitesimal antenna, the current density is:

ˆ4

j roI dlA r z er

ˆˆˆ cos sinz r

Calculating the vector potential,

In spherical coordinates,

Vector Potential

ECE 546 – Jose Schutt‐Aine 32

Resolving into components,

ˆˆˆ cos sin4

j roI dlA r z r er

cosˆ4

j ror

I dlA z er

sin4

j roI dlA er

Vector Potential

ECE 546 – Jose Schutt‐Aine 33

Calculate E and H fields

1H A

1 sin 0sinr

AH A

1 1 0sin

rAH rAr r

E and H Fields

ECE 546 – Jose Schutt‐Aine 34

1 rAH rAr r

11 sin4

j roI dlH j er j r

1E Hj

1 1sinsinrE H

r j

E and H Fields

ECE 546 – Jose Schutt‐Aine 35

2

2cos 1 114

j ror

I dlE j er j r j

1 1E rHr r j

2 2

1 1 1sin 14

j roj I dlE j er j r r j

E and H Fields

ECE 546 – Jose Schutt‐Aine 36

21 1sin 1

4j roj I dlE e

r j r j r

2

2cos 1 114

j ror

I dlE j er j r j

11 sin4

j roI dlH j er j r

E and H Fields

ECE 546 – Jose Schutt‐Aine 37

Far field : 1 orr r 2

1then, 0r

, whereE H

0rE

sin4

j roj I dlH er

Note that:

sin4

j roj I dlE er

Far Field Approximation

ECE 546 – Jose Schutt‐Aine 38

• Uniform constant phase locus is a plane• Constant magnitude• Independent of • Does not decay

Characteristics of plane waves

Similarities between infinitesimal antenna far field radiated and plane wave

(a) E and H are perpendicular(b) E and H are related by (c) E is perpendicular to H

Far Field Approximation

ECE 546 – Jose Schutt‐Aine 39

P t E t H t

Time-average Poynting vector or TA power density

1 Re *2

P E H

E and H here are PHASORS

22 2ˆ ˆRe sin

2 2 4oI dlrP H rr

Poynting Vector

ECE 546 – Jose Schutt‐Aine 40

Total power radiated (time-average)

2

0 0P ds

P = 2ˆwith sinds rr d d

22 2 2

0 0sin sin

2 4oI dl

r d dr

P =

23

0

2 sin2 4

oI dl d

P =

Time-Average Power

ECE 546 – Jose Schutt‐Aine 41

243 4

oI dl

P =

Poynting Power DensityDirective Gain =Average Poynting Power Densityover area of sphere with radius r

2Directive Gain =/ 4

P

r

P

Time-Average Power

ECE 546 – Jose Schutt‐Aine 42

22

22

sin2 4

Directive Gain4 / 43 4

o

o

I dlr

I dlr

For infinitesimal antenna,

23Directive Gain sin2

Directivity

ECE 546 – Jose Schutt‐Aine 43

Directivity: gain in direction of maximum value

Radiation resistance:

From 212 oRIP we have: 2

2rad

o

RI

P

For infinitesimal antenna:

2

2 2

2 4 23 4 3

orad

o

I dl dlRI

Directivity

ECE 546 – Jose Schutt‐Aine 44

2280rad

dlR

For free space, 120

The radiation resistance of an antenna is the value of a fictitious resistance that would dissipate an amount of power equal to the radiated power Prwhen the current in the resistance is equal to the maximum current along the antenna

(for Hertzian dipole)

A high radiation resistance is a desirable property for an antenna

Radiation Resistance